File size: 8,038 Bytes
05f9833
714cc17
091113e
fc50602
091113e
 
 
 
 
 
5a89f37
 
 
 
 
b5b4697
 
 
5a89f37
 
091113e
5e67733
82f3a6e
 
 
c8227b7
82f3a6e
c8227b7
 
5e67733
c8227b7
82f3a6e
 
 
f6679f7
 
 
 
 
 
 
 
4a2577e
5a89f37
4a2577e
 
 
 
5a89f37
 
 
 
f6679f7
 
 
 
 
 
4a2577e
f6679f7
 
 
 
 
 
5a89f37
f6679f7
 
5a89f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f9833
 
 
 
 
8dd7af4
9eb5891
 
 
 
0b16722
9eb5891
ca76df5
0b16722
8dd7af4
 
 
 
 
 
 
504f304
8dd7af4
 
 
 
 
 
 
 
 
bd5a194
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import torch
from io import BytesIO
import os

import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image

import gradio as gr
import cv2
import tempfile
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from io import BytesIO

# Load the YOLO model
from models.common import DetectMultiBackend



weights_path = "./last.pt"
device = torch.device("cpu")  # Correctly define the device
model = DetectMultiBackend(weights_path, device=device)  # Load YOLOv5 model correctly
model.eval()

# model_path = "./last.pt"
# model = torch.jit.load(model_path, map_location=torch.device("cpu"))
# model.eval()
# transform=transforms.Compose([
#     transforms.ToPILImage(),
#     transforms.Resize((512,640)),
#     transforms.ToTensor()
# ])
transform = transforms.Compose([
    transforms.ToPILImage(),  # Ensure input is a PIL image
    transforms.Resize((512, 640)),
    transforms.ToTensor()
])
# transform = transforms.Compose([
#     transforms.Resize((640, 640)),
#     transforms.ToTensor(),
# ])

OBJECT_NAMES = ['enemies']

def detect_objects_in_image(image):
       """
    Detect objects in the given image.
    """
    # Ensure image is a PIL Image
    if isinstance(image, torch.Tensor):
        image = transforms.ToPILImage()(image)  # Convert tensor to PIL image
    
    if isinstance(image, Image.Image):
        orig_w, orig_h = image.size  # PIL image size returns (width, height)
    else:
        raise TypeError(f"Expected a PIL Image but got {type(image)}")

    # Apply transformation
    img_tensor = transform(image).unsqueeze(0)



    with torch.no_grad():
        pred = model(img_tensor)[0]

    if isinstance(pred[0], torch.Tensor):
        pred = [p.cpu().numpy() for p in pred]

    pred = np.concatenate(pred, axis=0)
    conf_thres = 0.25
    mask = pred[:, 4] > conf_thres
    pred = pred[mask]

    if len(pred) == 0:
        return Image.fromarray(np.array(image)), None  # Return only image and None for graph

    boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
    class_ids = np.argmax(class_probs, axis=1)

    boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
    boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
    boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
    boxes[:, 3] = boxes[:, 1] + boxes[:, 3]

    boxes[:, [0, 2]] *= orig_w / 640
    boxes[:, [1, 3]] *= orig_h / 640
    boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])

    indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)

    object_counts = {name: 0 for name in OBJECT_NAMES}
    img_array = np.array(image)

    if len(indices) > 0:
        for i in indices.flatten():
            x1, y1, x2, y2 = map(int, boxes[i])
            cls = class_ids[i]
            object_name = OBJECT_NAMES[cls] if cls < len(OBJECT_NAMES) else f"Unknown ({cls})"
            if object_name in object_counts:
                object_counts[object_name] += 1
            cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(img_array, f"{object_name}: {scores[i]:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    # Generate and return graph instead of dictionary
    graph_image = generate_vehicle_count_graph(object_counts)

    return Image.fromarray(img_array), graph_image  # Now returning only 2 outputs


# def generate_vehicle_count_graph(object_counts):
#     color_palette = ['#4C9ACD', '#88B8A3', '#7F9C9C', '#D1A3B5', '#A1C6EA', '#FFB6C1', '#F0E68C', '#D3B0D8', '#F8A5D1', '#B8B8D1']
    
#     fig, ax = plt.subplots(figsize=(8, 5))
#     labels = list(object_counts.keys())
#     values = list(object_counts.values())
    
#     ax.bar(labels, values, color=color_palette[:len(labels)])
    
#     ax.set_xlabel("Vehicle Categories", fontsize=12, fontweight='bold')
#     ax.set_ylabel("Number of Vehicles", fontsize=12, fontweight='bold')
#     ax.set_title("Detected Vehicles in Image", fontsize=14, fontweight='bold')
    
#     plt.xticks(rotation=45, ha='right', fontsize=10)
#     plt.yticks(fontsize=10)
    
#     plt.tight_layout()

#     buf = BytesIO()
#     plt.savefig(buf, format='png')
#     buf.seek(0)
    
#     return Image.open(buf)

def generate_vehicle_count_graph(object_counts):
    color_palette = ['#4C9ACD', '#88B8A3', '#7F9C9C', '#D1A3B5', '#A1C6EA', '#FFB6C1', '#F0E68C', '#D3B0D8', '#F8A5D1', '#B8B8D1']
    
    fig, ax = plt.subplots(figsize=(8, 5))
    labels = list(object_counts.keys())
    values = list(object_counts.values())
    
    ax.bar(labels, values, color=color_palette[:len(labels)])
    ax.set_xlabel("Vehicle Categories", fontsize=12, fontweight='bold')
    ax.set_ylabel("Number of Vehicles", fontsize=12, fontweight='bold')
    ax.set_title("Detected Vehicles in Image", fontsize=14, fontweight='bold')
    
    plt.xticks(rotation=45, ha='right', fontsize=10)
    plt.yticks(fontsize=10)
    plt.tight_layout()
    
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    
    plt.close(fig)  # ✅ CLOSE THE FIGURE TO FREE MEMORY
    
    return Image.open(buf)
    
def detect_objects_in_video(video_input):
    cap = cv2.VideoCapture(video_input)
    if not cap.isOpened():
        return "Error: Cannot open video file.", None  # Returning a second value (None) to match expected outputs

    frame_width, frame_height, fps = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FPS))
    temp_video_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
    out = cv2.VideoWriter(temp_video_output, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))

    # Initialize the counts for vehicle categories
    total_counts = {name: 0 for name in ['car', 'truck', 'bus', 'motorcycle', 'bicycle']}

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

        # Get frame with detected objects and graph
        frame_with_boxes, graph_image = detect_objects_in_image(image)

        # Convert image back to OpenCV format for writing video
        out.write(cv2.cvtColor(np.array(frame_with_boxes), cv2.COLOR_RGB2BGR))

    cap.release()
    out.release()

    return temp_video_output, graph_image  # Return both expected outputs

def greet(name):
    return "Hello " + name + "!!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")

from urllib.request import urlretrieve

# get image examples from github
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-1450-_jpg.jpg?raw=true", "clip2_-1450-_jpg.jpg") # make sure to use "copy image address when copying image from Github"
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-539-_jpg.jpg?raw=true", "clip2_-539-_jpg.jpg")
examples = [ # need to manually delete cache everytime new examples are added
    ["clip2_-1450-_jpg.jpg"], 
    ["clip2_-539-_jpg.jpg"]]


# define app features and run
title = "SpecLab Demo"
description = "<p style='text-align: center'>Gradio demo for an ASPP model architecture trained on the SpecLab dataset. To use it, simply add your image, or click one of the examples to load them. Since this demo is run on CPU only, please allow additional time for processing. </p>"
article = "<p style='text-align: center'><a href='https://github.com/Nano1337/SpecLab'>Github Repo</a></p>"
css = "#0 {object-fit: contain;} #1 {object-fit: contain;}"
demo = gr.Interface(fn=detect_objects_in_image, 
                    title=title, 
                    description=description,
                    article=article,
                    inputs=gr.Image(elem_id=0, show_label=False), 
                    outputs=gr.Image(elem_id=1, show_label=False),
                    css=css, 
                    examples=examples, 
                    cache_examples=True,
                    allow_flagging='never')
demo.launch()