ValorantTracker / app.py
SamDaLamb's picture
Update app.py
ebfa118 verified
import gradio as gr
import torch
from io import BytesIO
import os
import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image
import gradio as gr
import cv2
import tempfile
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from io import BytesIO
# Load the YOLO model
from models.common import DetectMultiBackend
weights_path = "./best.torchscript"
device = torch.device("cpu") # Correctly define the device
model = torch.jit.load(weights_path)
# model.eval() # Load YOLOv5 model correctly
model.eval()
# model_path = "./last.pt"
# model = torch.jit.load(model_path, map_location=torch.device("cpu"))
# model.eval()
# transform=transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize((512,640)),
# transforms.ToTensor()
# ])
transform = transforms.Compose([ # Ensure input is a PIL image
transforms.Resize((640, 640)),
transforms.ToTensor()
])
# transform = transforms.Compose([
# transforms.Resize((640, 640)),
# transforms.ToTensor(),
# ])
OBJECT_NAMES = ['enemies']
def detect_objects_in_image(image):
print(type(image))
print(np.ndarray.view(image))
print(image.size)
if isinstance(image, np.ndarray):
print("Converting NumPy array to PIL Image")
image = Image.fromarray(image)
print(image.size)
img_tensor = transform(image).unsqueeze(0)
orig_w, orig_h = image.size
print("passed1")
print(torch.no_grad())
with torch.no_grad():
pred = model(img_tensor)[0]
print("Passed2")
if isinstance(pred[0], torch.Tensor):
pred = [p.cpu().numpy() for p in pred]
print("Passed3")
pred = np.concatenate(pred, axis=0)
conf_thres = 0.25
# Ensure `pred` is at least a 2D array before indexing
pred = np.atleast_2d(pred) # Converts 1D to 2D if necessary
print("passed4")
mask = pred[:, 4] > conf_thres
pred = pred[mask]
print("passed5")
print(len(pred))
print(Image.fromarray(np.array(image)))
print(np.array(image))
print(type(image))
print(len(pred))
if len(pred) == 0:
return Image.fromarray(np.array(image)) # Return only image and None for graph
print("passed6")
boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
class_ids = np.argmax(class_probs, axis=1)
print("passed7")
boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
print("passed8")
boxes[:, [0, 2]] *= orig_w / 640
boxes[:, [1, 3]] *= orig_h / 640
boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])
print("passed9")
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)
print("passed10")
object_counts = {name: 0 for name in OBJECT_NAMES}
img_array = np.array(image)
print("passed11")
if len(indices) > 0:
for i in indices.flatten():
x1, y1, x2, y2 = map(int, boxes[i])
cls = class_ids[i]
object_name = OBJECT_NAMES[cls] if cls < len(OBJECT_NAMES) else f"Unknown ({cls})"
if object_name in object_counts:
object_counts[object_name] += 1
cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img_array, f"{object_name}: {scores[i]:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
# Generate and return graph instead of dictionary
# graph_image = generate_vehicle_count_graph(object_counts)
print(Image.fromarray(img_array),"hey")
return Image.fromarray(img_array)#, graph_image # Now returning only 2 outputs
# def generate_vehicle_count_graph(object_counts):
# color_palette = ['#4C9ACD', '#88B8A3', '#7F9C9C', '#D1A3B5', '#A1C6EA', '#FFB6C1', '#F0E68C', '#D3B0D8', '#F8A5D1', '#B8B8D1']
# fig, ax = plt.subplots(figsize=(8, 5))
# labels = list(object_counts.keys())
# values = list(object_counts.values())
# ax.bar(labels, values, color=color_palette[:len(labels)])
# ax.set_xlabel("Vehicle Categories", fontsize=12, fontweight='bold')
# ax.set_ylabel("Number of Vehicles", fontsize=12, fontweight='bold')
# ax.set_title("Detected Vehicles in Image", fontsize=14, fontweight='bold')
# plt.xticks(rotation=45, ha='right', fontsize=10)
# plt.yticks(fontsize=10)
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf, format='png')
# buf.seek(0)
# return Image.open(buf)
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
from urllib.request import urlretrieve
# get image examples from github
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-1450-_jpg.jpg?raw=true",
"clip2_-1450-_jpg.jpg") # make sure to use "copy image address when copying image from Github"
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-539-_jpg.jpg?raw=true",
"clip2_-539-_jpg.jpg")
examples = [ # need to manually delete cache everytime new examples are added
["clip2_-1450-_jpg.jpg"],
["clip2_-539-_jpg.jpg"]]
# define app features and run
title = "Valorant Tracker Demo"
description = "<p style='text-align: center'>Gradio demo for a YOLO model architecture trained on the custom made dataset. To use it, simply add your image, or click one of the examples to load them. Since this demo is run on CPU only, please allow additional time for processing. I would like it to be knwon that the results from this virtual space are much worse than the same model on my computer. For an unknown reason this model perfroms worse in this space. If anyone does know the reason feel free to contanct: [email protected] .</p>"
article = "<p style='text-align: center'><a href='https://github.com/Nano1337/SpecLab'>Github Repo</a></p>"
css = "#0 {object-fit: contain;} #1 {object-fit: contain;}"
print("chek3")
demo = gr.Interface(fn=detect_objects_in_image,
title=title,
description=description,
article=article,
inputs=gr.Image(elem_id=0, show_label=False),
outputs=gr.Image(elem_id=1, show_label=False),
css=css,
examples=examples,
cache_examples=True,
allow_flagging='never')
demo.launch()