File size: 6,531 Bytes
05f9833
714cc17
091113e
fc50602
091113e
 
 
 
 
 
5a89f37
 
 
 
 
b5b4697
 
 
5a89f37
 
091113e
5e67733
82f3a6e
 
dc9a3ca
c8227b7
c1b84ba
 
5e67733
c8227b7
82f3a6e
 
 
f6679f7
 
 
 
 
7715280
ebfa118
4a2577e
5a89f37
4a2577e
 
 
 
5a89f37
 
 
5ff0a7b
500e874
7715280
3f11c90
24c686a
7715280
 
9a57456
b222e8b
 
 
b1b0c59
7715280
7c06628
f11b0b6
7c06628
7715280
5a89f37
 
7715280
f11b0b6
5a89f37
 
 
f11b0b6
5a89f37
 
55b4b6b
 
 
f11b0b6
5a89f37
 
5bd136a
9d45ad7
 
 
 
b74b614
5a89f37
916d087
5bd136a
5a89f37
 
5bd136a
5a89f37
 
 
 
5bd136a
5a89f37
 
 
5bd136a
5a89f37
5bd136a
5a89f37
 
5bd136a
5a89f37
 
 
 
 
 
 
 
09624f9
 
5a89f37
 
b1b0c59
cb74baa
9aa606e
b1b0c59
5a89f37
 
 
 
09624f9
5a89f37
 
 
09624f9
5a89f37
09624f9
5a89f37
 
 
09624f9
5a89f37
 
09624f9
5a89f37
 
 
 
 
09624f9
5a89f37
 
09624f9
05f9833
09624f9
05f9833
09624f9
4d071df
8dd7af4
9eb5891
 
 
09624f9
 
 
 
 
 
0b16722
8dd7af4
 
5ef8ab6
d5c7f35
8dd7af4
 
4a1eab0
09624f9
 
8dd7af4
 
09624f9
8dd7af4
09624f9
 
8dd7af4
 
bd5a194
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import torch
from io import BytesIO
import os

import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image

import gradio as gr
import cv2
import tempfile
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from io import BytesIO

# Load the YOLO model
from models.common import DetectMultiBackend

weights_path = "./best.torchscript"
device = torch.device("cpu")  # Correctly define the device
model = torch.jit.load(weights_path)
# model.eval()  # Load YOLOv5 model correctly
model.eval()

# model_path = "./last.pt"
# model = torch.jit.load(model_path, map_location=torch.device("cpu"))
# model.eval()
# transform=transforms.Compose([
#     transforms.ToPILImage(),
#     transforms.Resize((512,640)),
#     transforms.ToTensor()
# ])
transform = transforms.Compose([  # Ensure input is a PIL image
    transforms.Resize((640, 640)),
    transforms.ToTensor()
])
# transform = transforms.Compose([
#     transforms.Resize((640, 640)),
#     transforms.ToTensor(),
# ])

OBJECT_NAMES = ['enemies']


def detect_objects_in_image(image):
    
    print(type(image))
    print(np.ndarray.view(image))
    
    
    print(image.size)
    if isinstance(image, np.ndarray):
        print("Converting NumPy array to PIL Image")
        image = Image.fromarray(image)
    print(image.size)
    img_tensor = transform(image).unsqueeze(0)
    orig_w, orig_h = image.size
    print("passed1")

    print(torch.no_grad())
    with torch.no_grad():
        pred = model(img_tensor)[0]
    
    print("Passed2")

    if isinstance(pred[0], torch.Tensor):
        pred = [p.cpu().numpy() for p in pred]
    print("Passed3")
    pred = np.concatenate(pred, axis=0)
    conf_thres = 0.25

        # Ensure `pred` is at least a 2D array before indexing
    pred = np.atleast_2d(pred)  # Converts 1D to 2D if necessary
    print("passed4")
    mask = pred[:, 4] > conf_thres
    pred = pred[mask]
    print("passed5")
    print(len(pred))
    print(Image.fromarray(np.array(image)))
    print(np.array(image))
    print(type(image))
    print(len(pred))
    if len(pred) == 0:
        return Image.fromarray(np.array(image))  # Return only image and None for graph
    print("passed6")
    boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
    class_ids = np.argmax(class_probs, axis=1)
    print("passed7")
    boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
    boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
    boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
    boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
    print("passed8")
    boxes[:, [0, 2]] *= orig_w / 640
    boxes[:, [1, 3]] *= orig_h / 640
    boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])
    print("passed9")
    indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)
    print("passed10")
    object_counts = {name: 0 for name in OBJECT_NAMES}
    img_array = np.array(image)
    print("passed11")
    if len(indices) > 0:
        for i in indices.flatten():
            x1, y1, x2, y2 = map(int, boxes[i])
            cls = class_ids[i]
            object_name = OBJECT_NAMES[cls] if cls < len(OBJECT_NAMES) else f"Unknown ({cls})"
            if object_name in object_counts:
                object_counts[object_name] += 1
            cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(img_array, f"{object_name}: {scores[i]:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 255, 0), 2)

    # Generate and return graph instead of dictionary
    # graph_image = generate_vehicle_count_graph(object_counts)

    print(Image.fromarray(img_array),"hey")
    return Image.fromarray(img_array)#, graph_image  # Now returning only 2 outputs


# def generate_vehicle_count_graph(object_counts):
#     color_palette = ['#4C9ACD', '#88B8A3', '#7F9C9C', '#D1A3B5', '#A1C6EA', '#FFB6C1', '#F0E68C', '#D3B0D8', '#F8A5D1', '#B8B8D1']

#     fig, ax = plt.subplots(figsize=(8, 5))
#     labels = list(object_counts.keys())
#     values = list(object_counts.values())

#     ax.bar(labels, values, color=color_palette[:len(labels)])

#     ax.set_xlabel("Vehicle Categories", fontsize=12, fontweight='bold')
#     ax.set_ylabel("Number of Vehicles", fontsize=12, fontweight='bold')
#     ax.set_title("Detected Vehicles in Image", fontsize=14, fontweight='bold')

#     plt.xticks(rotation=45, ha='right', fontsize=10)
#     plt.yticks(fontsize=10)

#     plt.tight_layout()

#     buf = BytesIO()
#     plt.savefig(buf, format='png')
#     buf.seek(0)

#     return Image.open(buf)






# demo = gr.Interface(fn=greet, inputs="text", outputs="text")

from urllib.request import urlretrieve

# get image examples from github
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-1450-_jpg.jpg?raw=true",
            "clip2_-1450-_jpg.jpg")  # make sure to use "copy image address when copying image from Github"
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-539-_jpg.jpg?raw=true",
            "clip2_-539-_jpg.jpg")
examples = [  # need to manually delete cache everytime new examples are added
    ["clip2_-1450-_jpg.jpg"],
    ["clip2_-539-_jpg.jpg"]]

# define app features and run
title = "Valorant Tracker Demo"
description = "<p style='text-align: center'>Gradio demo for a YOLO model architecture trained on the custom made dataset. To use it, simply add your image, or click one of the examples to load them. Since this demo is run on CPU only, please allow additional time for processing. I would like it to be knwon that the results from this virtual space are much worse than the same model on my computer. For an unknown reason this model perfroms worse in this space. If anyone does know the reason feel free to contanct: [email protected] .</p>"
article = "<p style='text-align: center'><a href='https://github.com/Nano1337/SpecLab'>Github Repo</a></p>"
css = "#0 {object-fit: contain;} #1 {object-fit: contain;}"
print("chek3")
demo = gr.Interface(fn=detect_objects_in_image,
                    title=title,
                    description=description,
                    article=article,
                    inputs=gr.Image(elem_id=0, show_label=False),
                    outputs=gr.Image(elem_id=1, show_label=False),
                    css=css,
                    examples=examples,
                    cache_examples=True,
                    allow_flagging='never')
demo.launch()