Spaces:
Sleeping
Sleeping
File size: 6,531 Bytes
05f9833 714cc17 091113e fc50602 091113e 5a89f37 b5b4697 5a89f37 091113e 5e67733 82f3a6e dc9a3ca c8227b7 c1b84ba 5e67733 c8227b7 82f3a6e f6679f7 7715280 ebfa118 4a2577e 5a89f37 4a2577e 5a89f37 5ff0a7b 500e874 7715280 3f11c90 24c686a 7715280 9a57456 b222e8b b1b0c59 7715280 7c06628 f11b0b6 7c06628 7715280 5a89f37 7715280 f11b0b6 5a89f37 f11b0b6 5a89f37 55b4b6b f11b0b6 5a89f37 5bd136a 9d45ad7 b74b614 5a89f37 916d087 5bd136a 5a89f37 5bd136a 5a89f37 5bd136a 5a89f37 5bd136a 5a89f37 5bd136a 5a89f37 5bd136a 5a89f37 09624f9 5a89f37 b1b0c59 cb74baa 9aa606e b1b0c59 5a89f37 09624f9 5a89f37 09624f9 5a89f37 09624f9 5a89f37 09624f9 5a89f37 09624f9 5a89f37 09624f9 5a89f37 09624f9 05f9833 09624f9 05f9833 09624f9 4d071df 8dd7af4 9eb5891 09624f9 0b16722 8dd7af4 5ef8ab6 d5c7f35 8dd7af4 4a1eab0 09624f9 8dd7af4 09624f9 8dd7af4 09624f9 8dd7af4 bd5a194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import torch
from io import BytesIO
import os
import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image
import gradio as gr
import cv2
import tempfile
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from io import BytesIO
# Load the YOLO model
from models.common import DetectMultiBackend
weights_path = "./best.torchscript"
device = torch.device("cpu") # Correctly define the device
model = torch.jit.load(weights_path)
# model.eval() # Load YOLOv5 model correctly
model.eval()
# model_path = "./last.pt"
# model = torch.jit.load(model_path, map_location=torch.device("cpu"))
# model.eval()
# transform=transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize((512,640)),
# transforms.ToTensor()
# ])
transform = transforms.Compose([ # Ensure input is a PIL image
transforms.Resize((640, 640)),
transforms.ToTensor()
])
# transform = transforms.Compose([
# transforms.Resize((640, 640)),
# transforms.ToTensor(),
# ])
OBJECT_NAMES = ['enemies']
def detect_objects_in_image(image):
print(type(image))
print(np.ndarray.view(image))
print(image.size)
if isinstance(image, np.ndarray):
print("Converting NumPy array to PIL Image")
image = Image.fromarray(image)
print(image.size)
img_tensor = transform(image).unsqueeze(0)
orig_w, orig_h = image.size
print("passed1")
print(torch.no_grad())
with torch.no_grad():
pred = model(img_tensor)[0]
print("Passed2")
if isinstance(pred[0], torch.Tensor):
pred = [p.cpu().numpy() for p in pred]
print("Passed3")
pred = np.concatenate(pred, axis=0)
conf_thres = 0.25
# Ensure `pred` is at least a 2D array before indexing
pred = np.atleast_2d(pred) # Converts 1D to 2D if necessary
print("passed4")
mask = pred[:, 4] > conf_thres
pred = pred[mask]
print("passed5")
print(len(pred))
print(Image.fromarray(np.array(image)))
print(np.array(image))
print(type(image))
print(len(pred))
if len(pred) == 0:
return Image.fromarray(np.array(image)) # Return only image and None for graph
print("passed6")
boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
class_ids = np.argmax(class_probs, axis=1)
print("passed7")
boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
print("passed8")
boxes[:, [0, 2]] *= orig_w / 640
boxes[:, [1, 3]] *= orig_h / 640
boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])
print("passed9")
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)
print("passed10")
object_counts = {name: 0 for name in OBJECT_NAMES}
img_array = np.array(image)
print("passed11")
if len(indices) > 0:
for i in indices.flatten():
x1, y1, x2, y2 = map(int, boxes[i])
cls = class_ids[i]
object_name = OBJECT_NAMES[cls] if cls < len(OBJECT_NAMES) else f"Unknown ({cls})"
if object_name in object_counts:
object_counts[object_name] += 1
cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img_array, f"{object_name}: {scores[i]:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
# Generate and return graph instead of dictionary
# graph_image = generate_vehicle_count_graph(object_counts)
print(Image.fromarray(img_array),"hey")
return Image.fromarray(img_array)#, graph_image # Now returning only 2 outputs
# def generate_vehicle_count_graph(object_counts):
# color_palette = ['#4C9ACD', '#88B8A3', '#7F9C9C', '#D1A3B5', '#A1C6EA', '#FFB6C1', '#F0E68C', '#D3B0D8', '#F8A5D1', '#B8B8D1']
# fig, ax = plt.subplots(figsize=(8, 5))
# labels = list(object_counts.keys())
# values = list(object_counts.values())
# ax.bar(labels, values, color=color_palette[:len(labels)])
# ax.set_xlabel("Vehicle Categories", fontsize=12, fontweight='bold')
# ax.set_ylabel("Number of Vehicles", fontsize=12, fontweight='bold')
# ax.set_title("Detected Vehicles in Image", fontsize=14, fontweight='bold')
# plt.xticks(rotation=45, ha='right', fontsize=10)
# plt.yticks(fontsize=10)
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf, format='png')
# buf.seek(0)
# return Image.open(buf)
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
from urllib.request import urlretrieve
# get image examples from github
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-1450-_jpg.jpg?raw=true",
"clip2_-1450-_jpg.jpg") # make sure to use "copy image address when copying image from Github"
urlretrieve("https://github.com/SamDaaLamb/ValorantTracker/blob/main/clip2_-539-_jpg.jpg?raw=true",
"clip2_-539-_jpg.jpg")
examples = [ # need to manually delete cache everytime new examples are added
["clip2_-1450-_jpg.jpg"],
["clip2_-539-_jpg.jpg"]]
# define app features and run
title = "Valorant Tracker Demo"
description = "<p style='text-align: center'>Gradio demo for a YOLO model architecture trained on the custom made dataset. To use it, simply add your image, or click one of the examples to load them. Since this demo is run on CPU only, please allow additional time for processing. I would like it to be knwon that the results from this virtual space are much worse than the same model on my computer. For an unknown reason this model perfroms worse in this space. If anyone does know the reason feel free to contanct: [email protected] .</p>"
article = "<p style='text-align: center'><a href='https://github.com/Nano1337/SpecLab'>Github Repo</a></p>"
css = "#0 {object-fit: contain;} #1 {object-fit: contain;}"
print("chek3")
demo = gr.Interface(fn=detect_objects_in_image,
title=title,
description=description,
article=article,
inputs=gr.Image(elem_id=0, show_label=False),
outputs=gr.Image(elem_id=1, show_label=False),
css=css,
examples=examples,
cache_examples=True,
allow_flagging='never')
demo.launch() |