SamDaLamb commited on
Commit
5bd136a
·
verified ·
1 Parent(s): 7715280

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -79,27 +79,27 @@ def detect_objects_in_image(image):
79
  print("passed4")
80
  mask = pred[:, 4] > conf_thres
81
  pred = pred[mask]
82
-
83
  if len(pred) == 0:
84
  return Image.fromarray(np.array(image)), None # Return only image and None for graph
85
-
86
  boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
87
  class_ids = np.argmax(class_probs, axis=1)
88
-
89
  boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
90
  boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
91
  boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
92
  boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
93
-
94
  boxes[:, [0, 2]] *= orig_w / 640
95
  boxes[:, [1, 3]] *= orig_h / 640
96
  boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])
97
-
98
  indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)
99
-
100
  object_counts = {name: 0 for name in OBJECT_NAMES}
101
  img_array = np.array(image)
102
-
103
  if len(indices) > 0:
104
  for i in indices.flatten():
105
  x1, y1, x2, y2 = map(int, boxes[i])
 
79
  print("passed4")
80
  mask = pred[:, 4] > conf_thres
81
  pred = pred[mask]
82
+ print("passed5")
83
  if len(pred) == 0:
84
  return Image.fromarray(np.array(image)), None # Return only image and None for graph
85
+ print("passed6")
86
  boxes, scores, class_probs = pred[:, :4], pred[:, 4], pred[:, 5:]
87
  class_ids = np.argmax(class_probs, axis=1)
88
+ print("passed7")
89
  boxes[:, 0] = boxes[:, 0] - (boxes[:, 2] / 2)
90
  boxes[:, 1] = boxes[:, 1] - (boxes[:, 3] / 2)
91
  boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
92
  boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
93
+ print("passed8")
94
  boxes[:, [0, 2]] *= orig_w / 640
95
  boxes[:, [1, 3]] *= orig_h / 640
96
  boxes = np.clip(boxes, 0, [orig_w, orig_h, orig_w, orig_h])
97
+ print("passed9")
98
  indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), conf_thres, 0.5)
99
+ print("passed10")
100
  object_counts = {name: 0 for name in OBJECT_NAMES}
101
  img_array = np.array(image)
102
+ print("passed11")
103
  if len(indices) > 0:
104
  for i in indices.flatten():
105
  x1, y1, x2, y2 = map(int, boxes[i])