Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -1,302 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
|
11 |
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
12 |
-
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
13 |
-
<br>
|
14 |
-
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
15 |
-
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
16 |
-
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
|
17 |
-
</div>
|
18 |
-
|
19 |
-
<br>
|
20 |
-
<p>
|
21 |
-
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
|
22 |
-
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
23 |
-
</p>
|
24 |
-
|
25 |
-
<div align="center">
|
26 |
-
<a href="https://github.com/ultralytics">
|
27 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
|
28 |
-
</a>
|
29 |
-
<img width="2%" />
|
30 |
-
<a href="https://www.linkedin.com/company/ultralytics">
|
31 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
|
32 |
-
</a>
|
33 |
-
<img width="2%" />
|
34 |
-
<a href="https://twitter.com/ultralytics">
|
35 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
|
36 |
-
</a>
|
37 |
-
<img width="2%" />
|
38 |
-
<a href="https://www.producthunt.com/@glenn_jocher">
|
39 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
|
40 |
-
</a>
|
41 |
-
<img width="2%" />
|
42 |
-
<a href="https://youtube.com/ultralytics">
|
43 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
|
44 |
-
</a>
|
45 |
-
<img width="2%" />
|
46 |
-
<a href="https://www.facebook.com/ultralytics">
|
47 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
|
48 |
-
</a>
|
49 |
-
<img width="2%" />
|
50 |
-
<a href="https://www.instagram.com/ultralytics/">
|
51 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
|
52 |
-
</a>
|
53 |
-
</div>
|
54 |
-
|
55 |
-
<!--
|
56 |
-
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
57 |
-
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
|
58 |
-
-->
|
59 |
-
|
60 |
-
</div>
|
61 |
-
|
62 |
-
## <div align="center">Documentation</div>
|
63 |
-
|
64 |
-
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
|
65 |
-
|
66 |
-
## <div align="center">Quick Start Examples</div>
|
67 |
-
|
68 |
-
<details open>
|
69 |
-
<summary>Install</summary>
|
70 |
-
|
71 |
-
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
|
72 |
-
[**Python>=3.7.0**](https://www.python.org/) environment, including
|
73 |
-
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
74 |
-
|
75 |
-
```bash
|
76 |
-
git clone https://github.com/ultralytics/yolov5 # clone
|
77 |
-
cd yolov5
|
78 |
-
pip install -r requirements.txt # install
|
79 |
-
```
|
80 |
-
|
81 |
-
</details>
|
82 |
-
|
83 |
-
<details open>
|
84 |
-
<summary>Inference</summary>
|
85 |
-
|
86 |
-
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
|
87 |
-
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
|
88 |
-
|
89 |
-
```python
|
90 |
-
import torch
|
91 |
-
|
92 |
-
# Model
|
93 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
|
94 |
-
|
95 |
-
# Images
|
96 |
-
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
97 |
-
|
98 |
-
# Inference
|
99 |
-
results = model(img)
|
100 |
-
|
101 |
-
# Results
|
102 |
-
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
103 |
-
```
|
104 |
-
|
105 |
-
</details>
|
106 |
-
|
107 |
-
<details>
|
108 |
-
<summary>Inference with detect.py</summary>
|
109 |
-
|
110 |
-
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
|
111 |
-
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
112 |
-
|
113 |
-
```bash
|
114 |
-
python detect.py --source 0 # webcam
|
115 |
-
img.jpg # image
|
116 |
-
vid.mp4 # video
|
117 |
-
path/ # directory
|
118 |
-
path/*.jpg # glob
|
119 |
-
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
120 |
-
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
121 |
-
```
|
122 |
-
|
123 |
-
</details>
|
124 |
-
|
125 |
-
<details>
|
126 |
-
<summary>Training</summary>
|
127 |
-
|
128 |
-
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
129 |
-
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
|
130 |
-
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
|
131 |
-
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
|
132 |
-
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
|
133 |
-
largest `--batch-size` possible, or pass `--batch-size -1` for
|
134 |
-
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
|
135 |
-
|
136 |
-
```bash
|
137 |
-
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
|
138 |
-
yolov5s 64
|
139 |
-
yolov5m 40
|
140 |
-
yolov5l 24
|
141 |
-
yolov5x 16
|
142 |
-
```
|
143 |
-
|
144 |
-
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
145 |
-
|
146 |
-
</details>
|
147 |
-
|
148 |
-
<details open>
|
149 |
-
<summary>Tutorials</summary>
|
150 |
-
|
151 |
-
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
|
152 |
-
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
|
153 |
-
RECOMMENDED
|
154 |
-
- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW
|
155 |
-
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
|
156 |
-
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
|
157 |
-
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW
|
158 |
-
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
|
159 |
-
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
160 |
-
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
|
161 |
-
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
|
162 |
-
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
|
163 |
-
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW
|
164 |
-
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) ⭐ NEW
|
165 |
-
|
166 |
-
</details>
|
167 |
-
|
168 |
-
## <div align="center">Environments</div>
|
169 |
-
|
170 |
-
Get started in seconds with our verified environments. Click each icon below for details.
|
171 |
-
|
172 |
-
<div align="center">
|
173 |
-
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
174 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
|
175 |
-
</a>
|
176 |
-
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
177 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
|
178 |
-
</a>
|
179 |
-
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
180 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
|
181 |
-
</a>
|
182 |
-
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
183 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
|
184 |
-
</a>
|
185 |
-
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
186 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
|
187 |
-
</a>
|
188 |
-
</div>
|
189 |
-
|
190 |
-
## <div align="center">Integrations</div>
|
191 |
-
|
192 |
-
<div align="center">
|
193 |
-
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
|
194 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
|
195 |
-
</a>
|
196 |
-
<a href="https://roboflow.com/?ref=ultralytics">
|
197 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
|
198 |
-
</a>
|
199 |
-
</div>
|
200 |
-
|
201 |
-
|Weights and Biases|Roboflow ⭐ NEW|
|
202 |
-
|:-:|:-:|
|
203 |
-
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|
204 |
-
|
205 |
-
<!-- ## <div align="center">Compete and Win</div>
|
206 |
-
|
207 |
-
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
|
208 |
-
|
209 |
-
<p align="center">
|
210 |
-
<a href="https://github.com/ultralytics/yolov5/discussions/3213">
|
211 |
-
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
|
212 |
-
</p> -->
|
213 |
-
|
214 |
-
## <div align="center">Why YOLOv5</div>
|
215 |
-
|
216 |
-
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
217 |
-
<details>
|
218 |
-
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
219 |
-
|
220 |
-
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
221 |
-
</details>
|
222 |
-
<details>
|
223 |
-
<summary>Figure Notes (click to expand)</summary>
|
224 |
-
|
225 |
-
- **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
226 |
-
- **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
227 |
-
- **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
228 |
-
- **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
229 |
-
|
230 |
-
</details>
|
231 |
-
|
232 |
-
### Pretrained Checkpoints
|
233 |
-
|
234 |
-
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|
235 |
-
|--- |--- |--- |--- |--- |--- |--- |--- |---
|
236 |
-
|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|
237 |
-
|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
|
238 |
-
|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
|
239 |
-
|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
|
240 |
-
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
|
241 |
-
| | | | | | | | |
|
242 |
-
|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
|
243 |
-
|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
|
244 |
-
|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
|
245 |
-
|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
|
246 |
-
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
|
247 |
-
|
248 |
-
<details>
|
249 |
-
<summary>Table Notes (click to expand)</summary>
|
250 |
-
|
251 |
-
- All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
252 |
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
253 |
-
- **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
254 |
-
- **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
255 |
-
|
256 |
-
</details>
|
257 |
-
|
258 |
-
## <div align="center">Contribute</div>
|
259 |
-
|
260 |
-
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
|
261 |
-
|
262 |
-
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
|
263 |
-
|
264 |
-
## <div align="center">Contact</div>
|
265 |
-
|
266 |
-
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
|
267 |
-
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
|
268 |
-
|
269 |
-
<br>
|
270 |
-
|
271 |
-
<div align="center">
|
272 |
-
<a href="https://github.com/ultralytics">
|
273 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
|
274 |
-
</a>
|
275 |
-
<img width="3%" />
|
276 |
-
<a href="https://www.linkedin.com/company/ultralytics">
|
277 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
|
278 |
-
</a>
|
279 |
-
<img width="3%" />
|
280 |
-
<a href="https://twitter.com/ultralytics">
|
281 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
|
282 |
-
</a>
|
283 |
-
<img width="3%" />
|
284 |
-
<a href="https://www.producthunt.com/@glenn_jocher">
|
285 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
|
286 |
-
</a>
|
287 |
-
<img width="3%" />
|
288 |
-
<a href="https://youtube.com/ultralytics">
|
289 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
|
290 |
-
</a>
|
291 |
-
<img width="3%" />
|
292 |
-
<a href="https://www.facebook.com/ultralytics">
|
293 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
|
294 |
-
</a>
|
295 |
-
<img width="3%" />
|
296 |
-
<a href="https://www.instagram.com/ultralytics/">
|
297 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
|
298 |
-
</a>
|
299 |
-
</div>
|
300 |
-
|
301 |
-
[assets]: https://github.com/ultralytics/yolov5/releases
|
302 |
-
[tta]: https://github.com/ultralytics/yolov5/issues/303
|
|
|
1 |
+
title: ValorantTracker
|
2 |
+
emoji: 🔥
|
3 |
+
colorFrom: gray
|
4 |
+
colorTo: purple
|
5 |
+
sdk: gradio
|
6 |
+
sdk_version: 5.15.0
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|