SamDaLamb commited on
Commit
3185d30
·
verified ·
1 Parent(s): bf48ed8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -302
README.md CHANGED
@@ -1,302 +1,9 @@
1
- <div align="center">
2
- <p>
3
- <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
4
- <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
5
- </p>
6
-
7
- English | [简体中文](.github/README_cn.md)
8
- <br>
9
- <div>
10
- <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
11
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
12
- <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
13
- <br>
14
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
15
- <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
16
- <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
17
- </div>
18
-
19
- <br>
20
- <p>
21
- YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
22
- open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
23
- </p>
24
-
25
- <div align="center">
26
- <a href="https://github.com/ultralytics">
27
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
28
- </a>
29
- <img width="2%" />
30
- <a href="https://www.linkedin.com/company/ultralytics">
31
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
32
- </a>
33
- <img width="2%" />
34
- <a href="https://twitter.com/ultralytics">
35
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
36
- </a>
37
- <img width="2%" />
38
- <a href="https://www.producthunt.com/@glenn_jocher">
39
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
40
- </a>
41
- <img width="2%" />
42
- <a href="https://youtube.com/ultralytics">
43
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
44
- </a>
45
- <img width="2%" />
46
- <a href="https://www.facebook.com/ultralytics">
47
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
48
- </a>
49
- <img width="2%" />
50
- <a href="https://www.instagram.com/ultralytics/">
51
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
52
- </a>
53
- </div>
54
-
55
- <!--
56
- <a align="center" href="https://ultralytics.com/yolov5" target="_blank">
57
- <img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
58
- -->
59
-
60
- </div>
61
-
62
- ## <div align="center">Documentation</div>
63
-
64
- See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
65
-
66
- ## <div align="center">Quick Start Examples</div>
67
-
68
- <details open>
69
- <summary>Install</summary>
70
-
71
- Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
72
- [**Python>=3.7.0**](https://www.python.org/) environment, including
73
- [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
74
-
75
- ```bash
76
- git clone https://github.com/ultralytics/yolov5 # clone
77
- cd yolov5
78
- pip install -r requirements.txt # install
79
- ```
80
-
81
- </details>
82
-
83
- <details open>
84
- <summary>Inference</summary>
85
-
86
- YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
87
- YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
88
-
89
- ```python
90
- import torch
91
-
92
- # Model
93
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
94
-
95
- # Images
96
- img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
97
-
98
- # Inference
99
- results = model(img)
100
-
101
- # Results
102
- results.print() # or .show(), .save(), .crop(), .pandas(), etc.
103
- ```
104
-
105
- </details>
106
-
107
- <details>
108
- <summary>Inference with detect.py</summary>
109
-
110
- `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
111
- the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
112
-
113
- ```bash
114
- python detect.py --source 0 # webcam
115
- img.jpg # image
116
- vid.mp4 # video
117
- path/ # directory
118
- path/*.jpg # glob
119
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
120
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
121
- ```
122
-
123
- </details>
124
-
125
- <details>
126
- <summary>Training</summary>
127
-
128
- The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
129
- results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
130
- and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
131
- YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
132
- 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
133
- largest `--batch-size` possible, or pass `--batch-size -1` for
134
- YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
135
-
136
- ```bash
137
- python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
138
- yolov5s 64
139
- yolov5m 40
140
- yolov5l 24
141
- yolov5x 16
142
- ```
143
-
144
- <img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
145
-
146
- </details>
147
-
148
- <details open>
149
- <summary>Tutorials</summary>
150
-
151
- - [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
152
- - [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️
153
- RECOMMENDED
154
- - [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW
155
- - [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)  🌟 NEW
156
- - [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
157
- - [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW
158
- - [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
159
- - [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
160
- - [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
161
- - [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
162
- - [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
163
- - [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)  ⭐ NEW
164
- - [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998)  ⭐ NEW
165
-
166
- </details>
167
-
168
- ## <div align="center">Environments</div>
169
-
170
- Get started in seconds with our verified environments. Click each icon below for details.
171
-
172
- <div align="center">
173
- <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
174
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
175
- </a>
176
- <a href="https://www.kaggle.com/ultralytics/yolov5">
177
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
178
- </a>
179
- <a href="https://hub.docker.com/r/ultralytics/yolov5">
180
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
181
- </a>
182
- <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
183
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
184
- </a>
185
- <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
186
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
187
- </a>
188
- </div>
189
-
190
- ## <div align="center">Integrations</div>
191
-
192
- <div align="center">
193
- <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
194
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
195
- </a>
196
- <a href="https://roboflow.com/?ref=ultralytics">
197
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
198
- </a>
199
- </div>
200
-
201
- |Weights and Biases|Roboflow ⭐ NEW|
202
- |:-:|:-:|
203
- |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
204
-
205
- <!-- ## <div align="center">Compete and Win</div>
206
-
207
- We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
208
-
209
- <p align="center">
210
- <a href="https://github.com/ultralytics/yolov5/discussions/3213">
211
- <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
212
- </p> -->
213
-
214
- ## <div align="center">Why YOLOv5</div>
215
-
216
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
217
- <details>
218
- <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
219
-
220
- <p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
221
- </details>
222
- <details>
223
- <summary>Figure Notes (click to expand)</summary>
224
-
225
- - **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
226
- - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
227
- - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
228
- - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
229
-
230
- </details>
231
-
232
- ### Pretrained Checkpoints
233
-
234
- |Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
235
- |--- |--- |--- |--- |--- |--- |--- |--- |---
236
- |[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
237
- |[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
238
- |[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
239
- |[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
240
- |[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
241
- | | | | | | | | |
242
- |[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
243
- |[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
244
- |[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
245
- |[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
246
- |[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
247
-
248
- <details>
249
- <summary>Table Notes (click to expand)</summary>
250
-
251
- - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
252
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
253
- - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
254
- - **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
255
-
256
- </details>
257
-
258
- ## <div align="center">Contribute</div>
259
-
260
- We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
261
-
262
- <a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
263
-
264
- ## <div align="center">Contact</div>
265
-
266
- For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
267
- professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
268
-
269
- <br>
270
-
271
- <div align="center">
272
- <a href="https://github.com/ultralytics">
273
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
274
- </a>
275
- <img width="3%" />
276
- <a href="https://www.linkedin.com/company/ultralytics">
277
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
278
- </a>
279
- <img width="3%" />
280
- <a href="https://twitter.com/ultralytics">
281
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
282
- </a>
283
- <img width="3%" />
284
- <a href="https://www.producthunt.com/@glenn_jocher">
285
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
286
- </a>
287
- <img width="3%" />
288
- <a href="https://youtube.com/ultralytics">
289
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
290
- </a>
291
- <img width="3%" />
292
- <a href="https://www.facebook.com/ultralytics">
293
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
294
- </a>
295
- <img width="3%" />
296
- <a href="https://www.instagram.com/ultralytics/">
297
- <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
298
- </a>
299
- </div>
300
-
301
- [assets]: https://github.com/ultralytics/yolov5/releases
302
- [tta]: https://github.com/ultralytics/yolov5/issues/303
 
1
+ title: ValorantTracker
2
+ emoji: 🔥
3
+ colorFrom: gray
4
+ colorTo: purple
5
+ sdk: gradio
6
+ sdk_version: 5.15.0
7
+ app_file: app.py
8
+ pinned: false
9
+ license: mit