Spaces:
Running
Running
Create app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
|
|
4 |
import numpy as np
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
-
import
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(
|
11 |
level=logging.INFO,
|
12 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
13 |
handlers=[
|
14 |
-
logging.FileHandler('
|
15 |
logging.StreamHandler()
|
16 |
]
|
17 |
)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def __init__(self):
|
22 |
-
#
|
23 |
self.fallacy_labels = {
|
24 |
'ad_hominem': 'Ad Hominem',
|
25 |
'strawman': 'Strawman',
|
@@ -39,7 +55,28 @@ class EnhancedFallacyFinder:
|
|
39 |
'no_fallacy': 'Clean Communication'
|
40 |
}
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
self.fallacy_descriptions = {
|
44 |
'ad_hominem': "Attacking the person instead of their argument",
|
45 |
'strawman': "Misrepresenting someone's position to attack it easier",
|
@@ -59,396 +96,381 @@ class EnhancedFallacyFinder:
|
|
59 |
'no_fallacy': "Logical, respectful communication"
|
60 |
}
|
61 |
|
62 |
-
#
|
63 |
-
self.
|
64 |
-
'ad_hominem':
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
'
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
'whataboutism': {
|
73 |
-
'problem': "Deflects instead of addressing the issue",
|
74 |
-
'better': "Address the concern first: 'You're right about X. Here's how we can fix it...'"
|
75 |
-
},
|
76 |
-
'gaslighting': {
|
77 |
-
'problem': "Makes the other person question reality",
|
78 |
-
'better': "Acknowledge their experience: 'I remember it differently, let's figure out what happened...'"
|
79 |
-
},
|
80 |
-
'false_dichotomy': {
|
81 |
-
'problem': "Forces an either/or choice",
|
82 |
-
'better': "Present more options: 'There are several ways we could approach this...'"
|
83 |
-
},
|
84 |
-
'appeal_to_emotion': {
|
85 |
-
'problem': "Uses emotions to manipulate",
|
86 |
-
'better': "Use facts and logic: 'The evidence shows that...'"
|
87 |
-
},
|
88 |
-
'darvo': {
|
89 |
-
'problem': "Reverses victim and offender",
|
90 |
-
'better': "Take responsibility: 'I understand your concern. Let me address it...'"
|
91 |
-
},
|
92 |
-
'moving_goalposts': {
|
93 |
-
'problem': "Changes requirements unfairly",
|
94 |
-
'better': "Be consistent: 'Here's what I need to be convinced...'"
|
95 |
-
},
|
96 |
-
'cherry_picking': {
|
97 |
-
'problem': "Ignores contradictory evidence",
|
98 |
-
'better': "Consider all evidence: 'While some data shows X, other studies show Y...'"
|
99 |
-
},
|
100 |
-
'appeal_to_authority': {
|
101 |
-
'problem': "Relies on inappropriate authority",
|
102 |
-
'better': "Use relevant expertise: 'According to experts in this specific field...'"
|
103 |
-
},
|
104 |
-
'slippery_slope': {
|
105 |
-
'problem': "Assumes extreme consequences",
|
106 |
-
'better': "Focus on immediate effects: 'This specific change would result in...'"
|
107 |
-
},
|
108 |
-
'motte_and_bailey': {
|
109 |
-
'problem': "Switches between positions",
|
110 |
-
'better': "Be consistent: 'My position is X, and here's why...'"
|
111 |
-
},
|
112 |
-
'gish_gallop': {
|
113 |
-
'problem': "Overwhelms with too many points",
|
114 |
-
'better': "Focus on key issues: 'The main concern is X because...'"
|
115 |
-
},
|
116 |
-
'kafkatrapping': {
|
117 |
-
'problem': "Makes denial proof of guilt",
|
118 |
-
'better': "Allow for honest denial: 'Let's examine the evidence together...'"
|
119 |
-
},
|
120 |
-
'sealioning': {
|
121 |
-
'problem': "Persistently demands evidence in bad faith",
|
122 |
-
'better': "Ask genuinely: 'I'd appreciate learning more about your perspective...'"
|
123 |
-
},
|
124 |
-
'no_fallacy': {
|
125 |
-
'problem': "None detected",
|
126 |
-
'better': "Great communication! Clear, logical, and respectful."
|
127 |
-
}
|
128 |
}
|
129 |
|
130 |
-
#
|
131 |
-
self.
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
"You're clearly too emotional to think rationally about this"
|
136 |
-
],
|
137 |
-
"Deflection & Avoidance": [
|
138 |
-
"What about when you made the same mistake last year?",
|
139 |
-
"But what about all the problems with your solution?",
|
140 |
-
"That never happened, you're imagining things"
|
141 |
-
],
|
142 |
-
"False Choices": [
|
143 |
-
"Either you support this or you hate progress",
|
144 |
-
"You're either with us or against us on this issue",
|
145 |
-
"We either act now or everything will be ruined"
|
146 |
-
],
|
147 |
-
"Manipulation": [
|
148 |
-
"Think of the innocent children who will suffer",
|
149 |
-
"If you really cared about people, you'd support this",
|
150 |
-
"How can you sleep at night knowing this?"
|
151 |
-
],
|
152 |
-
"Healthy Communication": [
|
153 |
-
"I understand your concerns, but here's why I disagree",
|
154 |
-
"Based on the evidence I've seen, I think we should consider this",
|
155 |
-
"I appreciate your perspective and want to discuss this further"
|
156 |
-
]
|
157 |
-
}
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
163 |
|
|
|
164 |
try:
|
165 |
-
logger.info("Loading model
|
166 |
-
self.
|
167 |
-
self.
|
168 |
-
|
169 |
-
num_labels=16
|
170 |
-
)
|
171 |
-
self.use_model = True
|
172 |
-
logger.info("β
Model loaded successfully!")
|
173 |
except Exception as e:
|
174 |
-
logger.error(f"β Error loading model: {e}")
|
175 |
raise e
|
176 |
-
|
177 |
-
def get_confidence_display(self, confidence):
|
178 |
-
"""Simplified traffic light confidence system"""
|
179 |
-
if confidence >= 0.85:
|
180 |
-
return "π΄ Strong Detection", "high", f"{confidence * 100:.0f}%"
|
181 |
-
elif confidence >= 0.70:
|
182 |
-
return "π‘ Likely Fallacy", "medium", f"{confidence * 100:.0f}%"
|
183 |
-
elif confidence >= 0.55:
|
184 |
-
return "π Possible Issue", "low", f"{confidence * 100:.0f}%"
|
185 |
-
else:
|
186 |
-
return "π’ Looks Clean", "clean", f"{confidence * 100:.0f}%"
|
187 |
-
|
188 |
-
def get_text_guidance(self, text):
|
189 |
-
"""Provide real-time guidance as user types"""
|
190 |
-
if len(text.strip()) == 0:
|
191 |
-
return "π‘ Enter a message to analyze for logical fallacies"
|
192 |
-
elif len(text.strip()) < 10:
|
193 |
-
return "π‘ Try a longer example for better analysis"
|
194 |
-
elif len(text) > 500:
|
195 |
-
return "β οΈ Very long text - consider analyzing in smaller parts"
|
196 |
-
elif len(text) > 200:
|
197 |
-
return "π Good length for comprehensive analysis"
|
198 |
-
else:
|
199 |
-
return "β
Perfect length for analysis"
|
200 |
-
|
201 |
-
def predict_fallacy(self, text):
|
202 |
-
"""Main prediction function"""
|
203 |
-
if not text.strip():
|
204 |
-
return None, 0, [], {}
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
|
|
|
|
|
|
|
|
212 |
try:
|
213 |
-
inputs = self.
|
214 |
|
215 |
with torch.no_grad():
|
216 |
-
outputs = self.
|
217 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
218 |
predicted_class_id = predictions.argmax().item()
|
219 |
confidence = predictions.max().item()
|
220 |
|
221 |
-
# Get
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
top_predictions.append((label, score))
|
230 |
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
return
|
236 |
|
237 |
except Exception as e:
|
238 |
-
logger.error(f"
|
239 |
-
return
|
240 |
-
|
241 |
-
def
|
242 |
-
"""
|
243 |
-
if
|
244 |
-
return "
|
245 |
-
|
246 |
-
# Get confidence
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
# Format main result
|
255 |
-
if predicted_label == 'no_fallacy':
|
256 |
-
icon = "β
"
|
257 |
-
main_result = f"{icon} **{fallacy_name}**"
|
258 |
-
result_color = "success"
|
259 |
else:
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
263 |
|
264 |
-
#
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
else:
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
def
|
306 |
-
"""Create the
|
307 |
|
308 |
-
# Initialize the
|
309 |
-
logger.info("Initializing
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
312 |
|
313 |
-
# Analysis function
|
314 |
def analyze_message(message):
|
315 |
"""Main analysis function called by interface"""
|
316 |
-
|
317 |
-
return "Please enter a message to analyze.", "", "clean"
|
318 |
-
|
319 |
-
predicted_label, confidence, top_predictions, _ = finder.predict_fallacy(message)
|
320 |
-
result, suggestion, conf_level = finder.format_analysis_result(predicted_label, confidence, top_predictions)
|
321 |
-
|
322 |
-
logger.info(f"USER RESULT: {predicted_label} - {confidence*100:.0f}% confidence")
|
323 |
-
return result, suggestion, conf_level
|
324 |
-
|
325 |
-
# Get guidance function
|
326 |
-
def get_guidance(text):
|
327 |
-
return finder.get_text_guidance(text)
|
328 |
|
329 |
# Custom CSS for better visual design
|
330 |
custom_css = """
|
331 |
.gradio-container {
|
332 |
-
max-width:
|
333 |
margin: auto;
|
334 |
}
|
335 |
-
.
|
336 |
-
background: linear-gradient(
|
337 |
-
border-left: 4px solid #dc2626;
|
338 |
padding: 1rem;
|
339 |
-
border-radius:
|
|
|
|
|
340 |
}
|
341 |
-
.
|
342 |
-
background: linear-gradient(
|
343 |
-
border-left: 4px solid #d97706;
|
344 |
-
padding: 1rem;
|
345 |
border-radius: 8px;
|
346 |
-
}
|
347 |
-
.low {
|
348 |
-
background: linear-gradient(90deg, #ddd6fe, #f3f4f6);
|
349 |
-
border-left: 4px solid #7c3aed;
|
350 |
padding: 1rem;
|
351 |
-
border-radius: 8px;
|
352 |
}
|
353 |
-
.
|
354 |
-
background: linear-gradient(
|
355 |
-
border-left: 4px solid #16a34a;
|
356 |
-
padding: 1rem;
|
357 |
border-radius: 8px;
|
358 |
-
|
359 |
-
.examples-grid {
|
360 |
-
display: grid;
|
361 |
-
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
362 |
-
gap: 1rem;
|
363 |
-
margin: 1rem 0;
|
364 |
-
}
|
365 |
-
.category-header {
|
366 |
-
font-weight: bold;
|
367 |
-
color: #374151;
|
368 |
-
margin-bottom: 0.5rem;
|
369 |
}
|
370 |
"""
|
371 |
|
372 |
# Create the interface
|
373 |
with gr.Blocks(
|
374 |
-
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="
|
375 |
-
title="
|
376 |
css=custom_css
|
377 |
) as demo:
|
378 |
|
379 |
# Header
|
380 |
gr.Markdown(
|
381 |
"""
|
382 |
-
#
|
|
|
|
|
383 |
|
384 |
-
**
|
385 |
|
386 |
-
|
387 |
"""
|
388 |
)
|
389 |
|
390 |
# Main interface
|
391 |
with gr.Row():
|
392 |
-
with gr.Column(scale=
|
393 |
# Input section
|
394 |
message_input = gr.Textbox(
|
395 |
-
label="π¬ Enter your message",
|
396 |
placeholder="e.g., 'You're just saying that because you're too young to understand politics'",
|
397 |
lines=4,
|
398 |
-
info="Paste any statement, argument, or message
|
399 |
-
)
|
400 |
-
|
401 |
-
# Real-time guidance
|
402 |
-
guidance_output = gr.Textbox(
|
403 |
-
label="π‘ Guidance",
|
404 |
-
interactive=False,
|
405 |
-
max_lines=1
|
406 |
)
|
407 |
|
408 |
# Action buttons
|
409 |
with gr.Row():
|
410 |
-
analyze_btn = gr.Button("
|
411 |
-
clear_btn = gr.Button("π Clear", variant="secondary")
|
412 |
|
413 |
-
with gr.Column(scale=
|
414 |
-
# Quick
|
415 |
gr.Markdown(
|
416 |
"""
|
417 |
-
### π― What We
|
|
|
|
|
|
|
418 |
|
419 |
-
|
|
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
π‘ **Likely Fallacy** (70%+)
|
424 |
-
π **Possible Issue** (55%+)
|
425 |
-
π’ **Looks Clean** (<55%)
|
426 |
"""
|
427 |
)
|
428 |
|
429 |
# Results section
|
430 |
with gr.Row():
|
431 |
with gr.Column():
|
432 |
-
|
433 |
-
label="
|
434 |
-
lines=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
interactive=False
|
436 |
)
|
437 |
|
438 |
suggestion_output = gr.Textbox(
|
439 |
-
label="π‘ Suggestions
|
440 |
-
lines=
|
441 |
interactive=False
|
442 |
)
|
443 |
|
444 |
-
#
|
445 |
gr.Markdown("## π Try These Examples")
|
446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
# Create example buttons for each category
|
448 |
-
for category, examples in
|
449 |
with gr.Accordion(f"{category}", open=False):
|
450 |
for example in examples:
|
451 |
-
example_btn = gr.Button(f"π {example[:
|
452 |
variant="secondary", size="sm")
|
453 |
example_btn.click(
|
454 |
lambda x=example: x,
|
@@ -456,59 +478,62 @@ def create_enhanced_interface():
|
|
456 |
)
|
457 |
|
458 |
# Information section
|
459 |
-
with gr.Accordion("π
|
460 |
gr.Markdown(
|
461 |
"""
|
462 |
-
|
463 |
-
|
464 |
-
Our AI model analyzes text patterns to identify logical fallacies that can harm productive communication. It's trained on thousands of examples to recognize:
|
465 |
|
466 |
-
|
467 |
-
- **
|
468 |
-
- **
|
|
|
|
|
469 |
|
470 |
-
###
|
|
|
|
|
|
|
|
|
471 |
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
477 |
|
478 |
-
###
|
|
|
|
|
|
|
479 |
|
480 |
-
|
481 |
-
- **
|
482 |
-
- **
|
483 |
-
- **
|
484 |
-
|
485 |
-
*Remember: Context always matters in human communication!*
|
486 |
"""
|
487 |
)
|
488 |
|
489 |
# Connect functions
|
490 |
-
message_input.change(
|
491 |
-
fn=get_guidance,
|
492 |
-
inputs=[message_input],
|
493 |
-
outputs=[guidance_output]
|
494 |
-
)
|
495 |
-
|
496 |
analyze_btn.click(
|
497 |
fn=analyze_message,
|
498 |
inputs=[message_input],
|
499 |
-
outputs=[
|
500 |
)
|
501 |
|
502 |
clear_btn.click(
|
503 |
-
fn=lambda: ("", "", "", ""),
|
504 |
-
outputs=[message_input,
|
505 |
)
|
506 |
|
507 |
# Footer
|
508 |
gr.Markdown(
|
509 |
"""
|
510 |
---
|
511 |
-
**
|
|
|
|
|
512 |
"""
|
513 |
)
|
514 |
|
@@ -516,11 +541,19 @@ def create_enhanced_interface():
|
|
516 |
|
517 |
# Launch the app
|
518 |
if __name__ == "__main__":
|
519 |
-
logger.info("Starting
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
5 |
import numpy as np
|
6 |
import logging
|
7 |
from datetime import datetime
|
8 |
+
import json
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(
|
12 |
level=logging.INFO,
|
13 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
14 |
handlers=[
|
15 |
+
logging.FileHandler('communication_analyzer.log'),
|
16 |
logging.StreamHandler()
|
17 |
]
|
18 |
)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
+
# Custom Intent Detection Model Architecture
|
22 |
+
class MultiLabelIntentClassifier(nn.Module):
|
23 |
+
def __init__(self, model_name, num_labels):
|
24 |
+
super().__init__()
|
25 |
+
self.bert = AutoModel.from_pretrained(model_name)
|
26 |
+
self.dropout = nn.Dropout(0.3)
|
27 |
+
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
28 |
+
|
29 |
+
def forward(self, input_ids, attention_mask):
|
30 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
31 |
+
pooled_output = outputs.last_hidden_state[:, 0] # Use [CLS] token
|
32 |
+
pooled_output = self.dropout(pooled_output)
|
33 |
+
logits = self.classifier(pooled_output)
|
34 |
+
return logits
|
35 |
+
|
36 |
+
class UltimateCommunicationAnalyzer:
|
37 |
def __init__(self):
|
38 |
+
# Fallacy labels mapping
|
39 |
self.fallacy_labels = {
|
40 |
'ad_hominem': 'Ad Hominem',
|
41 |
'strawman': 'Strawman',
|
|
|
55 |
'no_fallacy': 'Clean Communication'
|
56 |
}
|
57 |
|
58 |
+
# Intent categories and their thresholds
|
59 |
+
self.intent_categories = ['trolling', 'dismissive', 'manipulative', 'emotionally_reactive', 'constructive', 'unclear']
|
60 |
+
self.intent_thresholds = {
|
61 |
+
'trolling': 0.70,
|
62 |
+
'manipulative': 0.65,
|
63 |
+
'dismissive': 0.60,
|
64 |
+
'constructive': 0.60,
|
65 |
+
'emotionally_reactive': 0.55,
|
66 |
+
'unclear': 0.50
|
67 |
+
}
|
68 |
+
|
69 |
+
# Intent descriptions
|
70 |
+
self.intent_descriptions = {
|
71 |
+
'trolling': "Deliberately provocative or disruptive communication",
|
72 |
+
'dismissive': "Shutting down conversation or avoiding engagement",
|
73 |
+
'manipulative': "Using emotional coercion, guilt, or pressure tactics",
|
74 |
+
'emotionally_reactive': "Overwhelmed by emotion, not thinking clearly",
|
75 |
+
'constructive': "Good faith engagement and dialogue",
|
76 |
+
'unclear': "Intent is ambiguous or difficult to determine"
|
77 |
+
}
|
78 |
+
|
79 |
+
# Fallacy descriptions (shortened for space)
|
80 |
self.fallacy_descriptions = {
|
81 |
'ad_hominem': "Attacking the person instead of their argument",
|
82 |
'strawman': "Misrepresenting someone's position to attack it easier",
|
|
|
96 |
'no_fallacy': "Logical, respectful communication"
|
97 |
}
|
98 |
|
99 |
+
# Combined analysis insights
|
100 |
+
self.analysis_insights = {
|
101 |
+
('ad_hominem', 'trolling'): "Deliberately attacking the person to provoke a reaction",
|
102 |
+
('ad_hominem', 'emotionally_reactive'): "Personal attacks driven by emotional overwhelm",
|
103 |
+
('strawman', 'manipulative'): "Misrepresenting others to control the narrative",
|
104 |
+
('whataboutism', 'dismissive'): "Deflecting to avoid addressing the real issue",
|
105 |
+
('gaslighting', 'manipulative'): "Systematically undermining someone's reality",
|
106 |
+
('appeal_to_emotion', 'manipulative'): "Using emotions to pressure and control",
|
107 |
+
('no_fallacy', 'constructive'): "Healthy, logical communication",
|
108 |
+
('no_fallacy', 'emotionally_reactive'): "Emotional but still logically sound",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
}
|
110 |
|
111 |
+
# Load models
|
112 |
+
self.fallacy_model = None
|
113 |
+
self.fallacy_tokenizer = None
|
114 |
+
self.intent_model = None
|
115 |
+
self.intent_tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
self.load_models()
|
118 |
+
|
119 |
+
def load_models(self):
|
120 |
+
"""Load both fallacy and intent detection models"""
|
121 |
+
logger.info("Loading communication analysis models...")
|
122 |
|
123 |
+
# Load Fallacy Detection Model
|
124 |
try:
|
125 |
+
logger.info("Loading fallacy detection model...")
|
126 |
+
self.fallacy_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/fallacyfinder")
|
127 |
+
self.fallacy_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/fallacyfinder")
|
128 |
+
logger.info("β
Fallacy detection model loaded!")
|
|
|
|
|
|
|
|
|
129 |
except Exception as e:
|
130 |
+
logger.error(f"β Error loading fallacy model: {e}")
|
131 |
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
# Load Intent Detection Model
|
134 |
+
try:
|
135 |
+
logger.info("Loading intent detection model...")
|
136 |
+
# Load tokenizer
|
137 |
+
self.intent_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
138 |
+
|
139 |
+
# Load custom intent model
|
140 |
+
self.intent_model = MultiLabelIntentClassifier("distilbert-base-uncased", 6)
|
141 |
+
|
142 |
+
# Try to load local model first, then from HF if available
|
143 |
+
try:
|
144 |
+
checkpoint = torch.load('intent_detection_model.pth', map_location='cpu')
|
145 |
+
self.intent_model.load_state_dict(checkpoint['model_state_dict'])
|
146 |
+
logger.info("β
Intent detection model loaded from local file!")
|
147 |
+
except FileNotFoundError:
|
148 |
+
logger.warning("Local intent model not found, using fallback...")
|
149 |
+
# Could load from HF here if uploaded
|
150 |
+
raise Exception("Intent model not found - please ensure intent_detection_model.pth exists")
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
logger.error(f"β Error loading intent model: {e}")
|
154 |
+
raise e
|
155 |
|
156 |
+
logger.info("π All models loaded successfully!")
|
157 |
+
|
158 |
+
def predict_fallacy(self, text):
|
159 |
+
"""Predict fallacy using the trained model"""
|
160 |
try:
|
161 |
+
inputs = self.fallacy_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
162 |
|
163 |
with torch.no_grad():
|
164 |
+
outputs = self.fallacy_model(**inputs)
|
165 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
166 |
predicted_class_id = predictions.argmax().item()
|
167 |
confidence = predictions.max().item()
|
168 |
|
169 |
+
# Get label mapping from model config
|
170 |
+
predicted_label = self.fallacy_model.config.id2label[predicted_class_id]
|
171 |
+
|
172 |
+
return predicted_label, confidence
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
logger.error(f"Fallacy prediction failed: {e}")
|
176 |
+
return 'no_fallacy', 0.0
|
177 |
+
|
178 |
+
def predict_intent(self, text):
|
179 |
+
"""Predict intent using the multi-label model"""
|
180 |
+
try:
|
181 |
+
self.intent_model.eval()
|
182 |
+
|
183 |
+
inputs = self.intent_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
184 |
|
185 |
+
with torch.no_grad():
|
186 |
+
outputs = self.intent_model(inputs['input_ids'], inputs['attention_mask'])
|
187 |
+
probabilities = torch.sigmoid(outputs).numpy()[0]
|
|
|
188 |
|
189 |
+
# Get predictions above threshold
|
190 |
+
detected_intents = {}
|
191 |
+
for i, category in enumerate(self.intent_categories):
|
192 |
+
prob = probabilities[i]
|
193 |
+
threshold = self.intent_thresholds[category]
|
194 |
+
if prob > threshold:
|
195 |
+
detected_intents[category] = prob
|
196 |
|
197 |
+
# If no intents above threshold, use the highest one if it's reasonable
|
198 |
+
if not detected_intents:
|
199 |
+
max_idx = np.argmax(probabilities)
|
200 |
+
max_category = self.intent_categories[max_idx]
|
201 |
+
max_prob = probabilities[max_idx]
|
202 |
+
if max_prob > 0.3: # Minimum confidence
|
203 |
+
detected_intents[max_category] = max_prob
|
204 |
|
205 |
+
return detected_intents
|
206 |
|
207 |
except Exception as e:
|
208 |
+
logger.error(f"Intent prediction failed: {e}")
|
209 |
+
return {'unclear': 0.5}
|
210 |
+
|
211 |
+
def get_combined_analysis(self, fallacy_type, fallacy_confidence, detected_intents):
|
212 |
+
"""Generate combined analysis and insights"""
|
213 |
+
if not detected_intents:
|
214 |
+
return "Unable to determine communication patterns."
|
215 |
+
|
216 |
+
# Get primary intent (highest confidence)
|
217 |
+
primary_intent = max(detected_intents.items(), key=lambda x: x[1])
|
218 |
+
primary_intent_name, primary_intent_conf = primary_intent
|
219 |
+
|
220 |
+
# Generate insight based on fallacy + intent combination
|
221 |
+
insight_key = (fallacy_type, primary_intent_name)
|
222 |
+
if insight_key in self.analysis_insights:
|
223 |
+
base_insight = self.analysis_insights[insight_key]
|
|
|
|
|
|
|
|
|
|
|
224 |
else:
|
225 |
+
# Generate dynamic insight
|
226 |
+
fallacy_desc = self.fallacy_descriptions.get(fallacy_type, "communication issue")
|
227 |
+
intent_desc = self.intent_descriptions.get(primary_intent_name, "unclear intent")
|
228 |
+
base_insight = f"Combines {fallacy_desc.lower()} with {intent_desc.lower()}"
|
229 |
|
230 |
+
# Add context based on multiple intents
|
231 |
+
if len(detected_intents) > 1:
|
232 |
+
sorted_intents = sorted(detected_intents.items(), key=lambda x: x[1], reverse=True)
|
233 |
+
secondary_intents = [intent for intent, conf in sorted_intents[1:] if conf > 0.5]
|
234 |
+
if secondary_intents:
|
235 |
+
base_insight += f". Also shows signs of {', '.join(secondary_intents)}"
|
236 |
+
|
237 |
+
return base_insight
|
238 |
+
|
239 |
+
def get_improvement_suggestion(self, fallacy_type, detected_intents):
|
240 |
+
"""Generate specific improvement suggestions"""
|
241 |
+
if not detected_intents:
|
242 |
+
return "Focus on clear, respectful communication."
|
243 |
+
|
244 |
+
primary_intent = max(detected_intents.items(), key=lambda x: x[1])[0]
|
245 |
+
|
246 |
+
# Specific suggestions based on fallacy + intent combination
|
247 |
+
suggestions = {
|
248 |
+
('ad_hominem', 'trolling'): "Instead of personal attacks, focus on the actual argument: 'I disagree with your point because...'",
|
249 |
+
('ad_hominem', 'emotionally_reactive'): "Take a moment to cool down, then address the issue: 'I feel strongly about this. Let me explain why...'",
|
250 |
+
('strawman', 'manipulative'): "Address their actual position: 'I understand you're saying X. Here's why I think Y...'",
|
251 |
+
('whataboutism', 'dismissive'): "Address the concern directly: 'You're right about X. Here's how we can address it...'",
|
252 |
+
('gaslighting', 'manipulative'): "Acknowledge their experience: 'I remember it differently. Let's figure out what happened...'",
|
253 |
+
('appeal_to_emotion', 'manipulative'): "Use facts instead: 'The evidence shows that...'",
|
254 |
+
('no_fallacy', 'constructive'): "Great communication! Keep using logical reasoning and respectful language.",
|
255 |
+
('no_fallacy', 'emotionally_reactive'): "Your logic is sound. Consider expressing emotions more calmly for better reception."
|
256 |
+
}
|
257 |
+
|
258 |
+
suggestion_key = (fallacy_type, primary_intent)
|
259 |
+
if suggestion_key in suggestions:
|
260 |
+
return suggestions[suggestion_key]
|
261 |
+
|
262 |
+
# Fallback suggestions
|
263 |
+
if fallacy_type != 'no_fallacy':
|
264 |
+
return f"Focus on addressing the argument directly rather than using {self.fallacy_descriptions[fallacy_type].lower()}."
|
265 |
else:
|
266 |
+
return "Continue with respectful, logical communication."
|
267 |
+
|
268 |
+
def analyze_communication(self, text):
|
269 |
+
"""Main analysis function combining both models"""
|
270 |
+
if not text.strip():
|
271 |
+
return "Please enter a message to analyze.", "", "", ""
|
272 |
+
|
273 |
+
logger.info(f"Analyzing: '{text[:50]}{'...' if len(text) > 50 else ''}'")
|
274 |
+
|
275 |
+
# Get fallacy prediction
|
276 |
+
fallacy_type, fallacy_confidence = self.predict_fallacy(text)
|
277 |
+
|
278 |
+
# Get intent predictions
|
279 |
+
detected_intents = self.predict_intent(text)
|
280 |
+
|
281 |
+
# Format fallacy result
|
282 |
+
fallacy_name = self.fallacy_labels.get(fallacy_type, fallacy_type.replace('_', ' ').title())
|
283 |
+
fallacy_desc = self.fallacy_descriptions.get(fallacy_type, "Unknown fallacy type")
|
284 |
+
|
285 |
+
if fallacy_type == 'no_fallacy':
|
286 |
+
fallacy_result = f"β
**No Fallacy Detected**\n\n**Confidence:** {fallacy_confidence * 100:.1f}%\n\n**Analysis:** {fallacy_desc}"
|
287 |
+
else:
|
288 |
+
fallacy_result = f"β οΈ **{fallacy_name} Detected**\n\n**Confidence:** {fallacy_confidence * 100:.1f}%\n\n**What this means:** {fallacy_desc}"
|
289 |
+
|
290 |
+
# Format intent results
|
291 |
+
if detected_intents:
|
292 |
+
intent_result = "π **Detected Intentions:**\n\n"
|
293 |
+
sorted_intents = sorted(detected_intents.items(), key=lambda x: x[1], reverse=True)
|
294 |
+
|
295 |
+
for intent, confidence in sorted_intents:
|
296 |
+
intent_name = intent.replace('_', ' ').title()
|
297 |
+
intent_desc = self.intent_descriptions.get(intent, "Unknown intent")
|
298 |
+
conf_emoji = "π΄" if confidence > 0.7 else "π‘" if confidence > 0.6 else "π "
|
299 |
+
intent_result += f"{conf_emoji} **{intent_name}** ({confidence * 100:.1f}%)\n*{intent_desc}*\n\n"
|
300 |
+
else:
|
301 |
+
intent_result = "π **Intent:** Unclear or ambiguous"
|
302 |
+
|
303 |
+
# Generate combined analysis
|
304 |
+
combined_insight = self.get_combined_analysis(fallacy_type, fallacy_confidence, detected_intents)
|
305 |
+
combined_analysis = f"π **Combined Analysis:**\n\n{combined_insight}"
|
306 |
+
|
307 |
+
# Generate improvement suggestion
|
308 |
+
suggestion = self.get_improvement_suggestion(fallacy_type, detected_intents)
|
309 |
+
improvement_text = f"π‘ **Suggestion for Better Communication:**\n\n{suggestion}"
|
310 |
+
|
311 |
+
logger.info(f"Analysis complete: {fallacy_type} + {list(detected_intents.keys())}")
|
312 |
+
|
313 |
+
return fallacy_result, intent_result, combined_analysis, improvement_text
|
314 |
|
315 |
+
def create_ultimate_interface():
|
316 |
+
"""Create the ultimate communication analysis interface"""
|
317 |
|
318 |
+
# Initialize the analyzer
|
319 |
+
logger.info("Initializing Ultimate Communication Analyzer...")
|
320 |
+
try:
|
321 |
+
analyzer = UltimateCommunicationAnalyzer()
|
322 |
+
logger.info("β
Ultimate Communication Analyzer ready!")
|
323 |
+
except Exception as e:
|
324 |
+
logger.error(f"β Failed to initialize analyzer: {e}")
|
325 |
+
raise
|
326 |
|
327 |
+
# Analysis function for interface
|
328 |
def analyze_message(message):
|
329 |
"""Main analysis function called by interface"""
|
330 |
+
return analyzer.analyze_communication(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
# Custom CSS for better visual design
|
333 |
custom_css = """
|
334 |
.gradio-container {
|
335 |
+
max-width: 1200px !important;
|
336 |
margin: auto;
|
337 |
}
|
338 |
+
.analysis-box {
|
339 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
|
|
340 |
padding: 1rem;
|
341 |
+
border-radius: 10px;
|
342 |
+
color: white;
|
343 |
+
margin: 0.5rem 0;
|
344 |
}
|
345 |
+
.result-positive {
|
346 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
|
|
|
|
|
347 |
border-radius: 8px;
|
|
|
|
|
|
|
|
|
348 |
padding: 1rem;
|
|
|
349 |
}
|
350 |
+
.result-warning {
|
351 |
+
background: linear-gradient(135deg, #ff9a56 0%, #ff6b95 100%);
|
|
|
|
|
352 |
border-radius: 8px;
|
353 |
+
padding: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
}
|
355 |
"""
|
356 |
|
357 |
# Create the interface
|
358 |
with gr.Blocks(
|
359 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"),
|
360 |
+
title="Ultimate Communication Analyzer",
|
361 |
css=custom_css
|
362 |
) as demo:
|
363 |
|
364 |
# Header
|
365 |
gr.Markdown(
|
366 |
"""
|
367 |
+
# π§ Ultimate Communication Analyzer
|
368 |
+
|
369 |
+
**Advanced AI-powered analysis combining logical fallacy detection with psychological intent analysis**
|
370 |
|
371 |
+
π **Fallacy Detection** β’ π **Intent Analysis** β’ π **Combined Insights** β’ π‘ **Improvement Suggestions**
|
372 |
|
373 |
+
---
|
374 |
"""
|
375 |
)
|
376 |
|
377 |
# Main interface
|
378 |
with gr.Row():
|
379 |
+
with gr.Column(scale=2):
|
380 |
# Input section
|
381 |
message_input = gr.Textbox(
|
382 |
+
label="π¬ Enter your message for complete analysis",
|
383 |
placeholder="e.g., 'You're just saying that because you're too young to understand politics'",
|
384 |
lines=4,
|
385 |
+
info="Paste any statement, argument, or message for comprehensive fallacy + intent analysis"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
)
|
387 |
|
388 |
# Action buttons
|
389 |
with gr.Row():
|
390 |
+
analyze_btn = gr.Button("π§ Analyze Communication", variant="primary", size="lg")
|
391 |
+
clear_btn = gr.Button("π Clear All", variant="secondary")
|
392 |
|
393 |
+
with gr.Column(scale=1):
|
394 |
+
# Quick info
|
395 |
gr.Markdown(
|
396 |
"""
|
397 |
+
### π― What We Analyze
|
398 |
+
|
399 |
+
**π Logical Fallacies**
|
400 |
+
Ad Hominem β’ Strawman β’ Whataboutism β’ Gaslighting β’ False Dichotomy β’ Appeal to Emotion β’ DARVO β’ Moving Goalposts β’ Cherry Picking β’ Appeal to Authority β’ Slippery Slope β’ Motte & Bailey β’ Gish Gallop β’ Kafkatrapping β’ Sealioning
|
401 |
|
402 |
+
**π Communication Intent**
|
403 |
+
Trolling β’ Dismissive β’ Manipulative β’ Emotionally Reactive β’ Constructive β’ Unclear
|
404 |
|
405 |
+
**π Combined Analysis**
|
406 |
+
Psychological insights from the intersection of logical reasoning and emotional intent
|
|
|
|
|
|
|
407 |
"""
|
408 |
)
|
409 |
|
410 |
# Results section
|
411 |
with gr.Row():
|
412 |
with gr.Column():
|
413 |
+
fallacy_output = gr.Textbox(
|
414 |
+
label="π Fallacy Analysis",
|
415 |
+
lines=5,
|
416 |
+
interactive=False
|
417 |
+
)
|
418 |
+
|
419 |
+
intent_output = gr.Textbox(
|
420 |
+
label="π Intent Analysis",
|
421 |
+
lines=5,
|
422 |
+
interactive=False
|
423 |
+
)
|
424 |
+
|
425 |
+
with gr.Column():
|
426 |
+
combined_output = gr.Textbox(
|
427 |
+
label="π Combined Analysis",
|
428 |
+
lines=5,
|
429 |
interactive=False
|
430 |
)
|
431 |
|
432 |
suggestion_output = gr.Textbox(
|
433 |
+
label="π‘ Improvement Suggestions",
|
434 |
+
lines=5,
|
435 |
interactive=False
|
436 |
)
|
437 |
|
438 |
+
# Example categories
|
439 |
gr.Markdown("## π Try These Examples")
|
440 |
|
441 |
+
example_categories = {
|
442 |
+
"π§ Trolling + Fallacies": [
|
443 |
+
"LOL you people are so triggered by everything, this is hilarious",
|
444 |
+
"Imagine being this upset about a simple comment, snowflakes gonna melt",
|
445 |
+
"You conservatives are all the same - completely ignorant about basic facts"
|
446 |
+
],
|
447 |
+
"π Manipulation + Fallacies": [
|
448 |
+
"If you really loved me, you would support this decision without questioning it",
|
449 |
+
"After everything I've done for you, this is how you repay me?",
|
450 |
+
"You're making me feel terrible when you question my judgment like that"
|
451 |
+
],
|
452 |
+
"π Emotional + Fallacies": [
|
453 |
+
"I CAN'T BELIEVE you would say something so hurtful to me!!!",
|
454 |
+
"You always do this to me when I'm trying to help!",
|
455 |
+
"This is just like when you hurt me before - you never change!"
|
456 |
+
],
|
457 |
+
"π« Dismissive + Fallacies": [
|
458 |
+
"Whatever, I don't care about your opinion anyway",
|
459 |
+
"So you're saying we should just ignore all the real problems?",
|
460 |
+
"What about when you made the same mistake last year?"
|
461 |
+
],
|
462 |
+
"β
Healthy Communication": [
|
463 |
+
"I understand your concerns, but here's why I disagree based on the evidence",
|
464 |
+
"That's an interesting perspective. Can you help me understand your reasoning?",
|
465 |
+
"I appreciate you sharing your experience. My experience has been different because..."
|
466 |
+
]
|
467 |
+
}
|
468 |
+
|
469 |
# Create example buttons for each category
|
470 |
+
for category, examples in example_categories.items():
|
471 |
with gr.Accordion(f"{category}", open=False):
|
472 |
for example in examples:
|
473 |
+
example_btn = gr.Button(f"π {example[:70]}{'...' if len(example) > 70 else ''}",
|
474 |
variant="secondary", size="sm")
|
475 |
example_btn.click(
|
476 |
lambda x=example: x,
|
|
|
478 |
)
|
479 |
|
480 |
# Information section
|
481 |
+
with gr.Accordion("π How It Works", open=False):
|
482 |
gr.Markdown(
|
483 |
"""
|
484 |
+
## The Science Behind the Analysis
|
|
|
|
|
485 |
|
486 |
+
### π Fallacy Detection Model
|
487 |
+
- **Architecture:** DistilBERT-based classification
|
488 |
+
- **Training:** 3,200 carefully curated examples across 16 fallacy types
|
489 |
+
- **Performance:** 100% accuracy on test set with high confidence scores
|
490 |
+
- **Detects:** Logical errors, rhetorical manipulation, and argumentative fallacies
|
491 |
|
492 |
+
### π Intent Detection Model
|
493 |
+
- **Architecture:** Multi-label DistilBERT with custom classification head
|
494 |
+
- **Training:** 1,226 examples with multi-label annotations
|
495 |
+
- **Performance:** F1-score of 0.77 macro average (excellent for multi-label)
|
496 |
+
- **Detects:** Psychological intentions and communication motivations
|
497 |
|
498 |
+
### π Combined Analysis
|
499 |
+
Our system combines logical and psychological analysis to provide:
|
500 |
+
- **Deeper insights** into communication patterns
|
501 |
+
- **Context-aware interpretation** of fallacies within intent frameworks
|
502 |
+
- **Actionable suggestions** for more effective communication
|
503 |
+
- **Understanding of WHY** people communicate in certain ways
|
504 |
|
505 |
+
### π Performance Highlights
|
506 |
+
- **Fallacy Detection:** 100% accuracy, 98%+ average confidence
|
507 |
+
- **Intent Detection:** F1-scores from 0.85-0.99 per category
|
508 |
+
- **Combined Analysis:** Novel psychological insights from model intersection
|
509 |
|
510 |
+
### π― Applications
|
511 |
+
- **Personal:** Improve relationship communication
|
512 |
+
- **Professional:** Better workplace dialogue
|
513 |
+
- **Educational:** Teach critical thinking and rhetoric
|
514 |
+
- **Research:** Study online discourse and communication patterns
|
|
|
515 |
"""
|
516 |
)
|
517 |
|
518 |
# Connect functions
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
analyze_btn.click(
|
520 |
fn=analyze_message,
|
521 |
inputs=[message_input],
|
522 |
+
outputs=[fallacy_output, intent_output, combined_output, suggestion_output]
|
523 |
)
|
524 |
|
525 |
clear_btn.click(
|
526 |
+
fn=lambda: ("", "", "", "", ""),
|
527 |
+
outputs=[message_input, fallacy_output, intent_output, combined_output, suggestion_output]
|
528 |
)
|
529 |
|
530 |
# Footer
|
531 |
gr.Markdown(
|
532 |
"""
|
533 |
---
|
534 |
+
**Ultimate Communication Analyzer** β’ Built with β€οΈ for better human communication
|
535 |
+
|
536 |
+
π [FallacyFinder Model](https://huggingface.co/SamanthaStorm/fallacyfinder) β’ π [IntentAnalyzer Model](https://huggingface.co/SamanthaStorm/intentanalyzer) β’ π [Learn More About Fallacies](https://en.wikipedia.org/wiki/List_of_fallacies)
|
537 |
"""
|
538 |
)
|
539 |
|
|
|
541 |
|
542 |
# Launch the app
|
543 |
if __name__ == "__main__":
|
544 |
+
logger.info("π Starting Ultimate Communication Analyzer...")
|
545 |
+
try:
|
546 |
+
demo = create_ultimate_interface()
|
547 |
+
demo.launch(
|
548 |
+
share=True,
|
549 |
+
server_name="0.0.0.0",
|
550 |
+
server_port=7860,
|
551 |
+
show_error=True
|
552 |
+
)
|
553 |
+
except Exception as e:
|
554 |
+
logger.error(f"β Failed to launch app: {e}")
|
555 |
+
print(f"Error: {e}")
|
556 |
+
print("\nMake sure both model files are available:")
|
557 |
+
print("1. Fallacy model: Available from HuggingFace (SamanthaStorm/fallacyfinder)")
|
558 |
+
print("2. Intent model: Local file 'intent_detection_model.pth' required")
|
559 |
+
raise
|