Samarth991's picture
adding app
e963fa4
raw
history blame
7.71 kB
import os
import gradio as gr
import re
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from typing import List
from sentence_transformers import SentenceTransformer
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain_community.llms.huggingface_hub import HuggingFaceHub
from read_photodocument import convert_PDF_to_Text
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
import contextlib
from langchain.schema import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
import logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)s %(message)s",
datefmt="%m/%d/%Y %I:%M:%S",
)
DEVICE = 'cpu'
FILE_EXT = ['pdf','jpg','jpeg']
DEFAULT_SYSTEM_PROMPT = "As an intelligent AI your task is to extract text from the pdf containing image and create a summary and higlight vital point within it ."
MAX_NEW_TOKENS = 2048
DEFAULT_TEMPERATURE = 0.1
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 2048
embedding_modelPath = 'multi-qa-mpnet-base-dot-v1'# "sentence-transformers/all-MiniLM-l6-v2"
local_embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False})
with contextlib.redirect_stdout(None):
ocr_model = ocr_predictor(
"db_resnet50",
"crnn_mobilenet_v3_large",
pretrained=True,
assume_straight_pages=True,
)
def loading_file():
return "Loading..."
def summarize_data(docs,llm_model,chain_type='refine'):
prompt_template = """
Write a concise summary of the following pointwise avoid repetion:
{text}
CONCISE SUMMARY:
"""
refine_template = (
"Your job is to produce a final summary in points.\n"
"Existing summary up to a certain point: {existing_answer}\n"
"write the details of summary pointwise and avoid repetion."
)
prompt = PromptTemplate.from_template(prompt_template)
refine_prompt = PromptTemplate.from_template(refine_template)
chain = load_summarize_chain(llm=llm_model,
chain_type=chain_type,
# question_prompt=prompt,
# refine_prompt=,
return_intermediate_steps=False,
input_key="input_documents",
output_key="output_text",
)
summary = chain({"input_documents": docs}, return_only_outputs=True)
output_text = summary["output_text"].strip()
regex = r"CONCISE SUMMARY:(.*)"
matches = re.finditer(regex, output_text, re.DOTALL)
for matchNum, match in enumerate(matches, start=1):
for groupNum in range(0, len(match.groups())):
groupNum = groupNum + 1
lines = match.group(groupNum).strip().split("\n")
return lines
def process_documents(texts,data_chunk=1000,chunk_overlap=10):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=data_chunk,
chunk_overlap=chunk_overlap,
length_function=len
)
texts = text_splitter.split_text(texts)
docs = [Document(page_content=txt) for txt in texts]
return docs
def get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',temperature=0.01,max_tokens=4096,API_key=None):
llm = HuggingFaceHub(
huggingfacehub_api_token =API_key ,
repo_id=model_id,
model_kwargs={"temperature":temperature, "max_new_tokens":max_tokens}
)
return llm
def document_loader(temperature,max_tokens,api_key,model_name,file_path):
model = get_hugging_face_model(model_id=model_name,API_key=api_key,temperature=temperature,max_tokens=max_tokens)
converted_txt = None
if file_path.endswith('.pdf'):
conversion_stats = convert_PDF_to_Text(document_file=file_path,ocr_model=ocr_model)
converted_txt = conversion_stats["converted_text"]
num_pages = conversion_stats["num_pages"]
was_truncated = conversion_stats["truncated"]
print("Converted text {}\nNum Pages;{}".format(converted_txt,num_pages))
if converted_txt:
print("Document Processed ..")
texts = process_documents(documents=converted_txt)
lines = summarize_data(docs=texts,llm_model=model)
return lines
else:
return "Error in Processsing document "
iface = gr.Interface(
fn= document_loader,inputs = [
gr.Slider(0.01, 0.1, value=0.01, step=0.01 , label="temperature", info="Choose between 0.01 to 0.1"),
gr.Slider(512,MAX_INPUT_TOKEN_LENGTH,value=1024,step=512,label="max new tokens",info='Max new tokens'),
gr.Textbox(label="Add API key", type="password"),
gr.Dropdown(['tiiuae/falcon-7b-instruct','mistralai/Mistral-7B-v0.1'],label='Large Language Model',info='LLM Service'),
"file"
]
ouputs="text",
description ="Summarize your PDF Document having Image • HuggingFace",
)
iface.launch()
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.HTML(title)
# with gr.Group():
# chatbot = gr.Chatbot(height=300)
# with gr.Row():
# sumarize_btn = gr.Button(value="Summarize", variant="primary", scale = 1)
# clean_chat_btn = gr.Button("Delete Chat")
# with gr.Column():
# LLM_option = gr.Dropdown(['tiiuae/falcon-7b-instruct','mistralai/Mistral-7B-v0.1'],label='Large Language Model Selection',info='LLM Service')
# with gr.Column():
# with gr.Box():
# file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select type of file to upload !")
# pdf_doc = gr.File(label="Upload File", file_types=FILE_EXT, type="file")
# with gr.Accordion(label='Advanced options', open=False):
# max_new_tokens = gr.Slider(
# label='Max new tokens',
# minimum=512,
# maximum=MAX_NEW_TOKENS,
# step=1024,
# value=DEFAULT_MAX_NEW_TOKENS,
# )
# temperature = gr.Slider(
# label='Temperature',
# minimum=0.01,
# maximum=1.0,
# step=0.05,
# value=DEFAULT_TEMPERATURE,
# )
# with gr.Row():
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
# load_pdf = gr.Button("Upload File & Generate Embeddings",).style(full_width = False)
# # chatbot = gr.Chatbot()l̥
# # question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
# # submit_button = gr.Button("Send Message")
# if pdf_doc:
# load_pdf.click(loading_file, None, langchain_status, queue=False)
# load_pdf.click(document_loader, inputs=[pdf_doc,file_extension,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
# #question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
# #submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
# sumarize_btn.click()
# # submit_btn.then(chatf.highlight_found_text, [chatbot, sources], [sources])
# clean_chat_btn.click(clear_chat, [], chatbot)
# demo.launch()