Spaces:
Running
Running
# import json | |
# import os | |
# from collections import defaultdict | |
# | |
# import huggingface_hub | |
# from huggingface_hub import ModelCard | |
# from huggingface_hub.hf_api import ModelInfo | |
# from transformers import AutoConfig | |
# from transformers.models.auto.tokenization_auto import AutoTokenizer | |
# | |
# | |
# def check_model_card(repo_id: str) -> tuple[bool, str]: | |
# """Checks if the model card and license exist and have been filled""" | |
# try: | |
# card = ModelCard.load(repo_id) | |
# except huggingface_hub.utils.EntryNotFoundError: | |
# return ( | |
# False, | |
# "Please add a model card to your model to explain how you trained/fine-tuned it.", | |
# ) | |
# | |
# # Enforce license metadata | |
# if card.data.license is None: | |
# if not ("license_name" in card.data and "license_link" in card.data): | |
# return False, ( | |
# "License not found. Please add a license to your model card using the `license` metadata or a" | |
# " `license_name`/`license_link` pair." | |
# ) | |
# | |
# # Enforce card content | |
# if len(card.text) < 200: | |
# return False, "Please add a description to your model card, it is too short." | |
# | |
# return True, "" | |
# | |
# | |
# def is_model_on_hub( | |
# model_name: str, | |
# revision: str, | |
# token: str | None = None, | |
# trust_remote_code=False, | |
# test_tokenizer=False, | |
# ) -> tuple[bool, str]: | |
# """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" | |
# try: | |
# config = AutoConfig.from_pretrained( | |
# model_name, | |
# revision=revision, | |
# trust_remote_code=trust_remote_code, | |
# token=token, | |
# ) | |
# if test_tokenizer: | |
# try: | |
# tk = AutoTokenizer.from_pretrained( | |
# model_name, | |
# revision=revision, | |
# trust_remote_code=trust_remote_code, | |
# token=token, | |
# ) | |
# except ValueError as e: | |
# return ( | |
# False, | |
# f"uses a tokenizer which is not in a transformers release: {e}", | |
# None, | |
# ) | |
# except Exception: | |
# return ( | |
# False, | |
# "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", | |
# None, | |
# ) | |
# return True, None, config | |
# | |
# except ValueError: | |
# return ( | |
# False, | |
# "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", | |
# None, | |
# ) | |
# | |
# except Exception: | |
# return False, "was not found on hub!", None | |
# | |
# | |
# def get_model_size(model_info: ModelInfo, precision: str): | |
# """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | |
# try: | |
# model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
# except (AttributeError, TypeError): | |
# return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
# | |
# size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | |
# model_size = size_factor * model_size | |
# return model_size | |
# | |
# | |
# def get_model_arch(model_info: ModelInfo): | |
# """Gets the model architecture from the configuration""" | |
# return model_info.config.get("architectures", "Unknown") | |
# | |
# | |
# def already_submitted_models(requested_models_dir: str) -> set[str]: | |
# """Gather a list of already submitted models to avoid duplicates""" | |
# depth = 1 | |
# file_names = [] | |
# users_to_submission_dates = defaultdict(list) | |
# | |
# for root, _, files in os.walk(requested_models_dir): | |
# current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) | |
# if current_depth == depth: | |
# for file in files: | |
# if not file.endswith(".json"): | |
# continue | |
# with open(os.path.join(root, file)) as f: | |
# info = json.load(f) | |
# file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") | |
# | |
# # Select organisation | |
# if info["model"].count("/") == 0 or "submitted_time" not in info: | |
# continue | |
# organisation, _ = info["model"].split("/") | |
# users_to_submission_dates[organisation].append(info["submitted_time"]) | |
# | |
# return set(file_names), users_to_submission_dates | |