Encodechka / src /encodechka /submission /check_validity.py
Roman Solomatin
init
c7ac965 unverified
raw
history blame
4.79 kB
# import json
# import os
# from collections import defaultdict
#
# import huggingface_hub
# from huggingface_hub import ModelCard
# from huggingface_hub.hf_api import ModelInfo
# from transformers import AutoConfig
# from transformers.models.auto.tokenization_auto import AutoTokenizer
#
#
# def check_model_card(repo_id: str) -> tuple[bool, str]:
# """Checks if the model card and license exist and have been filled"""
# try:
# card = ModelCard.load(repo_id)
# except huggingface_hub.utils.EntryNotFoundError:
# return (
# False,
# "Please add a model card to your model to explain how you trained/fine-tuned it.",
# )
#
# # Enforce license metadata
# if card.data.license is None:
# if not ("license_name" in card.data and "license_link" in card.data):
# return False, (
# "License not found. Please add a license to your model card using the `license` metadata or a"
# " `license_name`/`license_link` pair."
# )
#
# # Enforce card content
# if len(card.text) < 200:
# return False, "Please add a description to your model card, it is too short."
#
# return True, ""
#
#
# def is_model_on_hub(
# model_name: str,
# revision: str,
# token: str | None = None,
# trust_remote_code=False,
# test_tokenizer=False,
# ) -> tuple[bool, str]:
# """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
# try:
# config = AutoConfig.from_pretrained(
# model_name,
# revision=revision,
# trust_remote_code=trust_remote_code,
# token=token,
# )
# if test_tokenizer:
# try:
# tk = AutoTokenizer.from_pretrained(
# model_name,
# revision=revision,
# trust_remote_code=trust_remote_code,
# token=token,
# )
# except ValueError as e:
# return (
# False,
# f"uses a tokenizer which is not in a transformers release: {e}",
# None,
# )
# except Exception:
# return (
# False,
# "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
# None,
# )
# return True, None, config
#
# except ValueError:
# return (
# False,
# "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
# None,
# )
#
# except Exception:
# return False, "was not found on hub!", None
#
#
# def get_model_size(model_info: ModelInfo, precision: str):
# """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
# try:
# model_size = round(model_info.safetensors["total"] / 1e9, 3)
# except (AttributeError, TypeError):
# return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
#
# size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
# model_size = size_factor * model_size
# return model_size
#
#
# def get_model_arch(model_info: ModelInfo):
# """Gets the model architecture from the configuration"""
# return model_info.config.get("architectures", "Unknown")
#
#
# def already_submitted_models(requested_models_dir: str) -> set[str]:
# """Gather a list of already submitted models to avoid duplicates"""
# depth = 1
# file_names = []
# users_to_submission_dates = defaultdict(list)
#
# for root, _, files in os.walk(requested_models_dir):
# current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
# if current_depth == depth:
# for file in files:
# if not file.endswith(".json"):
# continue
# with open(os.path.join(root, file)) as f:
# info = json.load(f)
# file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
#
# # Select organisation
# if info["model"].count("/") == 0 or "submitted_time" not in info:
# continue
# organisation, _ = info["model"].split("/")
# users_to_submission_dates[organisation].append(info["submitted_time"])
#
# return set(file_names), users_to_submission_dates