File size: 2,375 Bytes
f151edb
ef4ba0f
f151edb
 
ef4ba0f
 
 
 
 
 
059ca1d
52c7db2
ef4ba0f
52c7db2
ef4ba0f
 
8ecc4e0
 
52c7db2
059ca1d
52c7db2
ef4ba0f
f151edb
059ca1d
52c7db2
059ca1d
a6ad2ae
059ca1d
 
 
 
 
 
 
a6ad2ae
059ca1d
a6ad2ae
ef4ba0f
 
059ca1d
52c7db2
8ecc4e0
059ca1d
52c7db2
 
 
ef4ba0f
059ca1d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
from transformers import BertTokenizer, BertForSequenceClassification
import torch

# Config class
class Config:
    TOKENIZER_PATH = "ahmedrachid/FinancialBERT"  # Use tokenizer from the original model
    MODEL_PATH = "Sandy0909/finance_sentiment"
    MAX_LEN = 512
    TOKENIZER = BertTokenizer.from_pretrained(TOKENIZER_PATH)

class FinancialBERT(torch.nn.Module):
    def __init__(self):
        super(FinancialBERT, self).__init__()
        self.bert = BertForSequenceClassification.from_pretrained(Config.MODEL_PATH, num_labels=3, hidden_dropout_prob=0.5)
 
    def forward(self, input_ids, attention_mask, token_type_ids, labels=None):
        output = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels)
        return output.loss, output.logits

# Load model
model = FinancialBERT()
model.eval()

# Streamlit App
# Set title and an image/banner if you have one
st.title("Financial Sentiment Analysis")
# st.image("path_to_your_image.jpg", use_column_width=True)

# Description
st.write("""
This application predicts the sentiment of financial sentences using a state-of-the-art model. Enter a financial sentence below and click 'Predict' to get its sentiment.
""")

sentence = st.text_area("Enter a financial sentence:", "")

if st.button("Predict"):
    tokenizer = Config.TOKENIZER
    inputs = tokenizer([sentence], return_tensors="pt", truncation=True, padding=True, max_length=Config.MAX_LEN)
    
    with torch.no_grad():
        logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], token_type_ids=inputs.get('token_type_ids'))[1]
    
    probs = torch.nn.functional.softmax(logits, dim=-1)
    predictions = torch.argmax(probs, dim=-1)
    sentiment = ['negative', 'neutral', 'positive'][predictions[0].item()]

    # Output visualization
    st.subheader('Predicted Sentiment:')
    st.write(f"The sentiment is: **{sentiment.capitalize()}**")

    # Show Confidence levels as a bar chart
    st.subheader('Model Confidence Levels:')
    st.bar_chart(probs[0].numpy(), use_container_width=True)

# Sidebar: Documentation/Help
st.sidebar.header('About')
st.sidebar.text("""
This application uses a BERT-based model trained specifically for financial sentences. The model can predict if the sentiment of a sentence is positive, negative, or neutral.
""")