File size: 1,205 Bytes
948b490
 
 
fe19dec
7096535
948b490
40afb3a
948b490
fe19dec
 
948b490
 
40afb3a
948b490
 
fe19dec
0330a7a
948b490
fe19dec
948b490
 
0330a7a
fe19dec
 
 
0330a7a
 
1b73e6b
 
 
0330a7a
948b490
 
aa2ce13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from transformers import pipeline

# βœ… Fast + available model
generator = pipeline("text2text-generation", model="google/flan-t5-small")

# 🧠 Prompt Template
TEMPLATE = (
    "You are a polite and professional customer support agent. "
    "Please respond to the customer's message:\n\n{input}"
)

# πŸ” Generate Reply
def generate_reply(user_input):
    prompt = TEMPLATE.format(input=user_input)
    response = generator(prompt, max_length=80, do_sample=False)[0]["generated_text"]
    return response.strip()

# πŸŽ›οΈ Interface
iface = gr.Interface(
    fn=generate_reply,
    inputs=gr.Textbox(lines=6, label="Customer Message", placeholder="Enter complaint or question..."),
    outputs=gr.Textbox(label="Support Reply"),
    title="⚑ Fast Auto-Reply Generator for Customer Support",
    description="Generate fast, polite, and professional replies to customer messages using Google's FLAN-T5.",
    examples=[
        ["I still haven't received my order and it's been 10 days."],
        ["Why was I charged twice for my subscription?"],
        ["Thanks for the quick response yesterday!"],
        ["My login isn't working since the update."]
    ]
)

iface.launch()