File size: 1,783 Bytes
5d670ae
da9f292
5d670ae
da9f292
 
5d670ae
da9f292
acddb2f
005d086
 
 
 
 
 
 
 
acddb2f
 
 
 
 
 
005d086
acddb2f
 
005d086
3ca006e
acddb2f
 
 
 
363a646
65ed4c1
363a646
acddb2f
da9f292
acddb2f
3ca006e
 
acddb2f
ee1d691
da9f292
5d670ae
005d086
 
acddb2f
 
477d4fe
acddb2f
 
103f82b
ee1d691
acddb2f
103f82b
ee1d691
acddb2f
8fe1b94
65ed4c1
2132698
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def enhance_image(img):
    # Resize big images
    max_dim = 1000
    height, width = img.shape[:2]
    if max(height, width) > max_dim:
        scale = max_dim / max(height, width)
        img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

    # Grayscale
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

    # Denoise
    gray = cv2.fastNlMeansDenoising(gray, h=15)

    # Sharpen
    kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
    sharp = cv2.filter2D(gray, -1, kernel)

    # Contrast
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    contrast = clahe.apply(sharp)

    return contrast

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        enhanced = enhance_image(img)

        results = reader.readtext(enhanced)
        print("DEBUG OCR RESULTS:", results)

        ocr_texts = [text for _, text, _ in results]
        weight_candidates = []

        for _, text, conf in results:
            cleaned = text.lower()
            cleaned = cleaned.replace("kg", "").replace("kgs", "")
            cleaned = cleaned.replace("o", "0").replace("s", "5").replace("g", "9")
            cleaned = re.sub(r"[^\d\.]", "", cleaned)

            if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
                weight_candidates.append((cleaned, conf))

        if not weight_candidates:
            return "Not detected", 0.0, "\n".join(ocr_texts)

        best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
        return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)

    except Exception as e:
        return f"Error: {str(e)}", 0.0, "OCR failed"