File size: 2,287 Bytes
5d670ae
da9f292
5d670ae
da9f292
 
5d670ae
da9f292
acddb2f
005d086
 
 
 
 
 
acddb2f
 
 
6257859
acddb2f
 
3ca006e
8211ee7
acddb2f
8211ee7
acddb2f
363a646
65ed4c1
363a646
acddb2f
da9f292
acddb2f
3ca006e
 
8211ee7
 
 
 
ee1d691
da9f292
5d670ae
8211ee7
6257859
8211ee7
6257859
 
 
005d086
8211ee7
 
 
477d4fe
8211ee7
acddb2f
103f82b
ee1d691
8211ee7
103f82b
ee1d691
6257859
8211ee7
 
 
 
 
 
6257859
8211ee7
8fe1b94
65ed4c1
2132698
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def enhance_image(img):
    max_dim = 1000
    height, width = img.shape[:2]
    if max(height, width) > max_dim:
        scale = max_dim / max(height, width)
        img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    gray = cv2.fastNlMeansDenoising(gray, h=15)

    kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
    sharp = cv2.filter2D(gray, -1, kernel)

    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    enhanced = clahe.apply(sharp)

    return enhanced

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        enhanced = enhance_image(img)

        results = reader.readtext(enhanced)
        print("DEBUG OCR RESULTS:", results)

        if not results:
            return "No text detected", 0.0, "OCR returned empty list"

        all_texts = []
        weight_candidates = []

        for _, text, conf in results:
            original = text
            cleaned = text.lower().strip()
            cleaned = cleaned.replace(",", ".")
            cleaned = cleaned.replace("o", "0").replace("O", "0")
            cleaned = cleaned.replace("s", "5").replace("S", "5")
            cleaned = cleaned.replace("g", "9").replace("G", "6")
            cleaned = cleaned.replace("kg", "").replace("kgs", "")
            cleaned = re.sub(r"[^\d\.]", "", cleaned)

            all_texts.append(f"{original}{cleaned} (conf: {round(conf, 2)})")

            if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
                weight_candidates.append((cleaned, conf))

        if not weight_candidates:
            return "Not detected", 0.0, "\n".join(all_texts)

        best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]

        if "." in best_weight:
            parts = best_weight.split(".")
            parts[0] = parts[0].lstrip("0") or "0"
            best_weight = ".".join(parts)
        else:
            best_weight = best_weight.lstrip("0") or "0"

        return best_weight, round(best_conf * 100, 2), "\n".join(all_texts)

    except Exception as e:
        return f"Error: {str(e)}", 0.0, "OCR failed"