Spaces:
Runtime error
Runtime error
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# Convert to grayscale and resize | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
gray = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) | |
# Histogram equalization and adaptive threshold | |
gray = cv2.equalizeHist(gray) | |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 11, 2) | |
thresh = cv2.bitwise_not(thresh) | |
# OCR with bounding boxes | |
results = reader.readtext(thresh) | |
# Filter potential weight values | |
candidates = [] | |
for (bbox, text, confidence) in results: | |
# Clean text | |
clean_text = text.replace('kg', '').strip() | |
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean_text): | |
candidates.append((clean_text, confidence)) | |
if not candidates: | |
return "Not detected", 0.0 | |
# Choose the highest confidence match | |
best_weight, conf = sorted(candidates, key=lambda x: -x[1])[0] | |
return best_weight, round(conf, 2) | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |