AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
38dd73a verified
raw
history blame
1.72 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# No enhancement, just resize
max_dim = 1000
height, width = img.shape[:2]
if max(height, width) > max_dim:
scale = max_dim / max(height, width)
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
results = reader.readtext(img)
print("DEBUG OCR RESULTS:", results)
if not results:
return "No text detected", 0.0, "OCR returned empty list"
raw_texts = []
weight_candidates = []
for _, text, conf in results:
original = text
cleaned = text.lower().strip()
cleaned = cleaned.replace(",", ".")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
raw_texts.append(f"{original} β†’ {cleaned} (conf: {round(conf, 2)})")
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
weight_candidates.append((cleaned, conf))
if not weight_candidates:
return "Not detected", 0.0, "\n".join(raw_texts)
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"