AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
8211ee7 verified
raw
history blame
2.29 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def enhance_image(img):
max_dim = 1000
height, width = img.shape[:2]
if max(height, width) > max_dim:
scale = max_dim / max(height, width)
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.fastNlMeansDenoising(gray, h=15)
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharp = cv2.filter2D(gray, -1, kernel)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(sharp)
return enhanced
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
enhanced = enhance_image(img)
results = reader.readtext(enhanced)
print("DEBUG OCR RESULTS:", results)
if not results:
return "No text detected", 0.0, "OCR returned empty list"
all_texts = []
weight_candidates = []
for _, text, conf in results:
original = text
cleaned = text.lower().strip()
cleaned = cleaned.replace(",", ".")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
all_texts.append(f"{original} β†’ {cleaned} (conf: {round(conf, 2)})")
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
weight_candidates.append((cleaned, conf))
if not weight_candidates:
return "Not detected", 0.0, "\n".join(all_texts)
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
if "." in best_weight:
parts = best_weight.split(".")
parts[0] = parts[0].lstrip("0") or "0"
best_weight = ".".join(parts)
else:
best_weight = best_weight.lstrip("0") or "0"
return best_weight, round(best_conf * 100, 2), "\n".join(all_texts)
except Exception as e:
return f"Error: {str(e)}", 0.0, "OCR failed"