AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
18f53a5 verified
raw
history blame
1.36 kB
import easyocr
import numpy as np
import cv2
import re
# Load the OCR engine
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
# Convert PIL to OpenCV image (numpy array)
img = np.array(pil_img)
# Step 1: Preprocess image for better OCR
img = cv2.resize(img, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
blur = cv2.GaussianBlur(gray, (3, 3), 0)
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
thresh = cv2.bitwise_not(thresh) # Invert for dark digits
# Step 2: Run OCR
results = reader.readtext(thresh, detail=1)
# Step 3: Extract numbers like 65.20 or 50
weight_candidates = []
for bbox, text, conf in results:
clean = text.lower().replace("kg", "").replace("kgs", "").strip()
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
weight_candidates.append((clean, conf))
if not weight_candidates:
return "Not detected", 0.0
# Step 4: Choose highest confidence number
weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0]
return weight, round(confidence * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0