Spaces:
Runtime error
Runtime error
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# STEP 1: Resize and convert to grayscale | |
img = cv2.resize(img, None, fx=4, fy=4, interpolation=cv2.INTER_CUBIC) | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# STEP 2: Denoise + Threshold | |
blur = cv2.GaussianBlur(gray, (5, 5), 0) | |
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
# Invert to get black text on white background | |
inverted = cv2.bitwise_not(thresh) | |
# STEP 3: OCR | |
results = reader.readtext(inverted) | |
# Debug print | |
print("OCR Results:", results) | |
# STEP 4: Extract weight values using regex | |
weight_candidates = [] | |
for _, text, conf in results: | |
text = text.replace("kg", "").replace("KG", "").strip() | |
if re.match(r"^\d{2,4}(\.\d{1,2})?$", text): | |
weight_candidates.append((text, conf)) | |
if not weight_candidates: | |
return "Not detected", 0.0 | |
# STEP 5: Highest confidence | |
weight, confidence = sorted(weight_candidates, key=lambda x: -x[1])[0] | |
return weight, round(confidence * 100, 2) | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |