Sanjayraju30 commited on
Commit
372ab96
·
verified ·
1 Parent(s): 2469d8d

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +14 -28
ocr_engine.py CHANGED
@@ -1,43 +1,29 @@
1
- import easyocr
2
  import numpy as np
3
  import cv2
4
  import re
5
 
6
- reader = easyocr.Reader(['en'], gpu=False)
7
-
8
  def extract_weight_from_image(pil_img):
9
  try:
10
- # Convert PIL to NumPy
11
  img = np.array(pil_img)
12
 
13
- # Step 1: Preprocessing
14
- img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
15
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
16
 
17
- # Improve contrast & threshold
18
- blur = cv2.GaussianBlur(gray, (5, 5), 0)
19
- _, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
20
- binary = cv2.bitwise_not(binary)
21
-
22
- # Step 2: OCR with bounding boxes
23
- results = reader.readtext(binary, detail=1)
24
-
25
- # Step 3: Filter for weight-like values
26
- weight_candidates = []
27
- for bbox, text, conf in results:
28
- clean = text.lower().replace("kg", "").replace("kgs", "").strip()
29
- clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake
30
-
31
- # Match like 2 digits or 3 digits or decimal numbers
32
- if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
33
- weight_candidates.append((clean, conf))
34
 
35
- if not weight_candidates:
36
- return "Not detected", 0.0
 
37
 
38
- # Step 4: Pick most confident
39
- best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
40
- return best_weight, round(best_conf * 100, 2)
 
 
41
 
42
  except Exception as e:
43
  return f"Error: {str(e)}", 0.0
 
1
+ import pytesseract
2
  import numpy as np
3
  import cv2
4
  import re
5
 
 
 
6
  def extract_weight_from_image(pil_img):
7
  try:
8
+ # Convert PIL to OpenCV format
9
  img = np.array(pil_img)
10
 
11
+ # Resize and convert to grayscale
12
+ img = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
13
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
14
 
15
+ # Thresholding for clarity
16
+ _, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY_INV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # Run OCR
19
+ text = pytesseract.image_to_string(thresh)
20
+ print("OCR TEXT:", text)
21
 
22
+ # Search for weight pattern
23
+ match = re.search(r"\b\d{2,4}(\.\d{1,2})?\b", text)
24
+ if match:
25
+ return match.group(), 99.0
26
+ return "Not detected", 0.0
27
 
28
  except Exception as e:
29
  return f"Error: {str(e)}", 0.0