Sanjayraju30 commited on
Commit
7a8e198
·
verified ·
1 Parent(s): 29533d7

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +11 -13
ocr_engine.py CHANGED
@@ -3,28 +3,21 @@ import numpy as np
3
  import cv2
4
  import re
5
 
6
- # Initialize EasyOCR
7
  reader = easyocr.Reader(['en'], gpu=False)
8
 
9
  def enhance_image(img):
10
- # Downscale large images
11
  max_dim = 1000
12
  height, width = img.shape[:2]
13
  if max(height, width) > max_dim:
14
  scale = max_dim / max(height, width)
15
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
16
 
17
- # Convert to grayscale
18
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
19
-
20
- # Denoise
21
  gray = cv2.fastNlMeansDenoising(gray, h=15)
22
 
23
- # Sharpen
24
  kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
25
  sharp = cv2.filter2D(gray, -1, kernel)
26
 
27
- # Enhance contrast
28
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
29
  enhanced = clahe.apply(sharp)
30
 
@@ -44,7 +37,7 @@ def extract_weight_from_image(pil_img):
44
  for _, text, conf in results:
45
  cleaned = text.lower().strip()
46
 
47
- # Replace common OCR misreads
48
  cleaned = cleaned.replace(",", ".")
49
  cleaned = cleaned.replace("o", "0").replace("O", "0")
50
  cleaned = cleaned.replace("s", "5").replace("S", "5")
@@ -52,18 +45,23 @@ def extract_weight_from_image(pil_img):
52
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
53
  cleaned = re.sub(r"[^\d\.]", "", cleaned)
54
 
55
- # Match numbers like 84.5, 102.3, 99.9
56
- if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", cleaned):
57
  weight_candidates.append((cleaned, conf))
58
 
59
  if not weight_candidates:
60
  return "Not detected", 0.0, "\n".join(ocr_texts)
61
 
62
- # Pick highest confidence match
63
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
64
 
65
- # Strip leading zeros if any
66
- best_weight = best_weight.lstrip('0') or '0'
 
 
 
 
 
67
 
68
  return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
69
 
 
3
  import cv2
4
  import re
5
 
 
6
  reader = easyocr.Reader(['en'], gpu=False)
7
 
8
  def enhance_image(img):
 
9
  max_dim = 1000
10
  height, width = img.shape[:2]
11
  if max(height, width) > max_dim:
12
  scale = max_dim / max(height, width)
13
  img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
14
 
 
15
  gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
 
 
16
  gray = cv2.fastNlMeansDenoising(gray, h=15)
17
 
 
18
  kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
19
  sharp = cv2.filter2D(gray, -1, kernel)
20
 
 
21
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
22
  enhanced = clahe.apply(sharp)
23
 
 
37
  for _, text, conf in results:
38
  cleaned = text.lower().strip()
39
 
40
+ # Fix common OCR errors
41
  cleaned = cleaned.replace(",", ".")
42
  cleaned = cleaned.replace("o", "0").replace("O", "0")
43
  cleaned = cleaned.replace("s", "5").replace("S", "5")
 
45
  cleaned = cleaned.replace("kg", "").replace("kgs", "")
46
  cleaned = re.sub(r"[^\d\.]", "", cleaned)
47
 
48
+ # Match weights like: 58.8, 75.02, 97.2, 102.34, etc.
49
+ if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
50
  weight_candidates.append((cleaned, conf))
51
 
52
  if not weight_candidates:
53
  return "Not detected", 0.0, "\n".join(ocr_texts)
54
 
55
+ # Pick the highest confidence result
56
  best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
57
 
58
+ # Remove unnecessary leading zeros
59
+ if "." in best_weight:
60
+ parts = best_weight.split(".")
61
+ parts[0] = parts[0].lstrip("0") or "0"
62
+ best_weight = ".".join(parts)
63
+ else:
64
+ best_weight = best_weight.lstrip("0") or "0"
65
 
66
  return best_weight, round(best_conf * 100, 2), "\n".join(ocr_texts)
67