Spaces:
Running
Running
File size: 1,891 Bytes
a481416 8b5815c eff70bd a481416 8b5815c a481416 8b5815c eff70bd a481416 8b5815c eff70bd 8b5815c eff70bd 6a56695 8b5815c eff70bd a481416 8b5815c eff70bd 8c50e18 eff70bd a481416 eff70bd 8b5815c eff70bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from PIL import Image, ImageEnhance, ImageOps
import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from datetime import datetime
import pytz
import re
# Load model and processor
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
# Enhance image before OCR
def enhance_image(image):
image = image.convert("L") # grayscale
image = ImageOps.invert(image) # invert colors
image = ImageEnhance.Contrast(image).enhance(2) # boost contrast
image = ImageEnhance.Sharpness(image).enhance(2) # sharpen
image = image.resize((image.width * 2, image.height * 2)) # enlarge
return image
# Extract weight
def detect_weight(image):
try:
processed_image = enhance_image(image)
pixel_values = processor(images=processed_image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Extract number
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", generated_text)
weight = match.group(1) if match else "Not detected"
# Timestamp
ist = pytz.timezone('Asia/Kolkata')
current_time = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S")
return f"Weight: {weight} kg\nCaptured At: {current_time}", image
except Exception as e:
return f"Error: {str(e)}", image
# Gradio UI
interface = gr.Interface(
fn=detect_weight,
inputs=gr.Image(type="pil", label="Upload or Capture Image"),
outputs=[gr.Textbox(label="Weight Info"), gr.Image(label="Snapshot")],
title="⚖️ Auto Weight Detector (No Tesseract)",
description="Detects weight from digital scale image using Hugging Face TrOCR."
)
interface.launch()
|