File size: 1,336 Bytes
6b14fa5
65ed4c1
8fe1b94
a71f519
6b14fa5
 
65ed4c1
363a646
65ed4c1
363a646
65ed4c1
f823764
f617821
 
 
f823764
363a646
f823764
 
 
 
 
 
 
 
33069a9
f617821
 
f823764
f617821
33069a9
f823764
 
65ed4c1
f617821
f823764
f617821
 
8fe1b94
65ed4c1
 
f823764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)

        # Resize for consistency
        if img.shape[1] > 1000:
            img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1])))

        # Preprocessing for 7-segment digital font
        gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        gray = cv2.resize(gray, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR)
        blur = cv2.GaussianBlur(gray, (3, 3), 0)
        _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        # Optional inversion for black background with white digits
        white_pct = np.mean(thresh > 127)
        if white_pct < 0.5:
            thresh = cv2.bitwise_not(thresh)

        # OCR
        result = reader.readtext(thresh, detail=0)
        combined_text = " ".join(result).strip()
        print("OCR Text:", combined_text)

        # Match number like 25, 65.2, 18.89 etc.
        match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text)
        if match:
            weight = match.group(1)
            return f"{weight} kg", 100.0
        else:
            return "No weight detected kg", 0.0

    except Exception as e:
        return f"Error: {str(e)}", 0.0