Spaces:
Running
Running
File size: 1,336 Bytes
6b14fa5 65ed4c1 8fe1b94 a71f519 6b14fa5 65ed4c1 363a646 65ed4c1 363a646 65ed4c1 f823764 f617821 f823764 363a646 f823764 33069a9 f617821 f823764 f617821 33069a9 f823764 65ed4c1 f617821 f823764 f617821 8fe1b94 65ed4c1 f823764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Resize for consistency
if img.shape[1] > 1000:
img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1])))
# Preprocessing for 7-segment digital font
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
gray = cv2.resize(gray, None, fx=3, fy=3, interpolation=cv2.INTER_LINEAR)
blur = cv2.GaussianBlur(gray, (3, 3), 0)
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Optional inversion for black background with white digits
white_pct = np.mean(thresh > 127)
if white_pct < 0.5:
thresh = cv2.bitwise_not(thresh)
# OCR
result = reader.readtext(thresh, detail=0)
combined_text = " ".join(result).strip()
print("OCR Text:", combined_text)
# Match number like 25, 65.2, 18.89 etc.
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text)
if match:
weight = match.group(1)
return f"{weight} kg", 100.0
else:
return "No weight detected kg", 0.0
except Exception as e:
return f"Error: {str(e)}", 0.0
|