AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
204176c verified
raw
history blame
19.6 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
from scipy.signal import convolve2d
# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR with English (enable GPU if available)
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.debug(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to adjust processing"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
logging.debug(f"Estimated brightness: {brightness}")
return brightness
def deblur_image(img):
"""Apply deconvolution to reduce blur (approximate Wiener filter)"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Create a simple point spread function (PSF) for deblurring
psf = np.ones((5, 5)) / 25
# Normalize image to float32
img_float = gray.astype(np.float32) / 255.0
# Convolve with PSF (simulate blur)
img_blurred = convolve2d(img_float, psf, mode='same')
# Avoid division by zero
img_blurred = np.where(img_blurred == 0, 1e-10, img_blurred)
# Deconvolve
img_deblurred = img_float / img_blurred
img_deblurred = np.clip(img_deblurred * 255, 0, 255).astype(np.uint8)
save_debug_image(img_deblurred, "00_deblurred")
return img_deblurred
def preprocess_image(img):
"""Enhance contrast, brightness, reduce noise, and deblur for digit detection"""
# Deblur first
deblurred = deblur_image(img)
# Convert to PIL for enhancement
pil_img = Image.fromarray(deblurred)
pil_img = ImageEnhance.Contrast(pil_img).enhance(2.5) # Aggressive contrast
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.5) # Stronger brightness
img_enhanced = np.array(pil_img)
save_debug_image(img_enhanced, "00_preprocessed_pil")
# Apply CLAHE for local contrast enhancement
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
enhanced = clahe.apply(img_enhanced)
save_debug_image(enhanced, "00_clahe_enhanced")
# Aggressive noise reduction
filtered = cv2.bilateralFilter(enhanced, d=15, sigmaColor=150, sigmaSpace=150)
save_debug_image(filtered, "00_bilateral_filtered")
return filtered
def normalize_image(img):
"""Resize image to standard dimensions while preserving aspect ratio"""
h, w = img.shape[:2]
target_height = 720
aspect_ratio = w / h
target_width = int(target_height * aspect_ratio)
if target_width < 320:
target_width = 320
target_height = int(target_width / aspect_ratio)
resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
save_debug_image(resized, "00_normalized")
logging.debug(f"Normalized image to {target_width}x{target_height}")
return resized
def detect_roi(img):
"""Detect the digital display region, with fallback to full image"""
try:
save_debug_image(img, "01_original")
gray = preprocess_image(img)
save_debug_image(gray, "02_preprocessed_grayscale")
# Try multiple thresholding methods
brightness = estimate_brightness(img)
if brightness > 120:
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 41, 7) # Inverted for bright displays
save_debug_image(thresh, "03_roi_adaptive_threshold_high")
else:
_, thresh = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY_INV) # Low threshold for dim displays
save_debug_image(thresh, "03_roi_simple_threshold_low")
# Morphological operations to connect digits
kernel = np.ones((7, 7), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
save_debug_image(thresh, "03_roi_morph_cleaned")
kernel = np.ones((15, 15), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=6)
save_debug_image(dilated, "04_roi_dilated")
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
if 100 < area < (img_area * 0.999): # Extremely relaxed area filter
x, y, w, h = cv2.boundingRect(c)
aspect_ratio = w / h if h > 0 else 0
if 0.3 <= aspect_ratio <= 15.0 and w > 20 and h > 10: # Very relaxed filters
valid_contours.append(c)
if valid_contours:
contour = max(valid_contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(contour)
padding = 120 # Very generous padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, returning full image.")
save_debug_image(img, "05_no_roi_full_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_detection_error_fallback")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 6 or w < 3: # Extremely relaxed size constraints
logging.debug(f"Digit image too small: {w}x{h}")
return None
segments = {
'top': (int(w*0.05), int(w*0.95), 0, int(h*0.3)),
'middle': (int(w*0.05), int(w*0.95), int(h*0.35), int(h*0.65)),
'bottom': (int(w*0.05), int(w*0.95), int(h*0.7), h),
'left_top': (0, int(w*0.35), int(h*0.05), int(h*0.55)),
'left_bottom': (0, int(w*0.35), int(h*0.45), int(h*0.95)),
'right_top': (int(w*0.65), w, int(h*0.05), int(h*0.55)),
'right_bottom': (int(w*0.65), w, int(h*0.45), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > 0.25 # Very low threshold
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
current_score = matches - non_matches_penalty
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = preprocess_image(img)
brightness = estimate_brightness(img)
# Multiple thresholding approaches
if brightness > 120:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
save_debug_image(thresh, "06_roi_otsu_threshold")
else:
_, thresh = cv2.threshold(gray, 15, 255, cv2.THRESH_BINARY_INV) # Very low threshold
save_debug_image(thresh, "06_roi_simple_threshold")
# Morphological cleaning
kernel = np.ones((5, 5), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
save_debug_image(thresh, "06_roi_morph_cleaned")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.2, mag_ratio=6.0,
allowlist='0123456789.-', y_ths=0.7)
logging.info(f"Custom OCR EasyOCR results: {results}")
if not results:
logging.info("Custom OCR EasyOCR found no digits.")
return None
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if len(text) <= 2 and any(c in '0123456789.-' for c in text) and h_bbox > 3:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
if easyocr_conf > 0.7 or easyocr_char in '.-' or digit_img_crop.shape[0] < 6 or digit_img_crop.shape[1] < 3:
recognized_text += easyocr_char
else:
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
recognized_text += easyocr_char
logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}")
if recognized_text:
return recognized_text
logging.info(f"Custom OCR text '{recognized_text}' is empty.")
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract weight from a PIL image of a digital scale display"""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
# Normalize image dimensions
img = normalize_image(img)
brightness = estimate_brightness(img)
conf_threshold = 0.2 if brightness > 120 else 0.1
roi_img, roi_bbox = detect_roi(img)
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
logging.info(f"Raw custom OCR result: {custom_result}")
# Minimal cleaning
text = re.sub(r"[^\d\.\-]", "", custom_result) # Allow negative signs
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
if text:
if text.startswith('.'):
text = "0" + text
if text.endswith('.'):
text = text.rstrip('.')
if text == '.' or text == '':
logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.")
else:
try:
weight = float(text)
logging.info(f"Custom OCR result: {text}, Confidence: 90.0%")
return text, 90.0
except ValueError:
logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.")
logging.warning(f"Custom OCR result '{custom_result}' failed cleaning, falling back.")
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
processed_roi_img = preprocess_image(roi_img)
# Multiple thresholding approaches
if brightness > 120:
thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 51, 9)
save_debug_image(thresh, "09_fallback_adaptive_thresh")
else:
_, thresh = cv2.threshold(processed_roi_img, 15, 255, cv2.THRESH_BINARY_INV)
save_debug_image(thresh, "09_fallback_simple_thresh")
# Morphological cleaning
kernel = np.ones((5, 5), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
save_debug_image(thresh, "09_fallback_morph_cleaned")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.2,
text_threshold=0.1, mag_ratio=7.0,
allowlist='0123456789.-', batch_size=4, y_ths=0.8)
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}")
text = text.lower().strip()
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4")
text = text.replace("e", "3")
text = text.replace("t", "7")
text = text.replace("~", "").replace("`", "")
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
text = re.sub(r"[^\d\.\-]", "", text)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
text = text.strip('.')
if len(text.replace('.', '').replace('-', '')) > 0:
try:
weight = float(text)
range_score = 1.0
if -1000 <= weight <= 1000: # Allow negative weights
range_score = 1.5
elif weight > 1000 and weight <= 2000:
range_score = 1.0
else:
range_score = 0.5
digit_count = len(text.replace('.', '').replace('-', ''))
digit_score = 1.0
if digit_count >= 2 and digit_count <= 6:
digit_score = 1.3
elif digit_count == 1:
digit_score = 0.8
score = conf * range_score * digit_score
if roi_bbox:
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
roi_area = w_roi * h_roi
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.01:
score *= 0.5
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
if bbox_aspect_ratio < 0.05:
score *= 0.7
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0":
best_weight = int_part
elif not dec_part and int_part == "0":
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0"
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0