File size: 19,594 Bytes
975f9c6
 
 
 
5234a64
d373620
 
 
204176c
5234a64
d373620
 
5234a64
204176c
5234a64
 
d373620
 
 
 
 
 
 
 
 
 
 
 
 
 
0f29b7c
204176c
0f29b7c
d373620
 
 
 
204176c
 
d373620
204176c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d373620
 
204176c
 
d373620
 
975f9c6
204176c
 
 
 
 
 
 
 
 
 
 
 
 
 
2b694be
204176c
5234a64
d373620
 
 
 
 
32de3b7
204176c
d373620
204176c
d373620
 
204176c
 
d373620
204176c
 
 
d373620
 
204176c
 
d373620
 
2b694be
d373620
2b694be
d373620
 
 
 
204176c
d373620
 
204176c
d373620
 
2b694be
204176c
d373620
204176c
d373620
 
 
 
 
 
 
204176c
 
4c95d04
2b694be
 
d373620
4c95d04
 
 
 
 
204176c
d373620
4c95d04
 
 
204176c
 
 
 
 
 
 
4c95d04
 
 
 
d373620
 
4c95d04
 
d373620
 
4c95d04
 
204176c
d373620
4c95d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d373620
4c95d04
 
d373620
 
 
 
 
 
4c95d04
d373620
 
 
 
 
 
 
 
4c95d04
 
 
 
2b694be
204176c
d373620
204176c
 
 
d373620
 
204176c
d373620
 
 
204176c
 
d373620
c7e59f2
4c95d04
204176c
 
 
d373620
 
4c95d04
d373620
4c95d04
 
d373620
 
c7e59f2
d373620
204176c
d373620
 
 
4c95d04
d373620
4c95d04
d373620
 
 
4c95d04
 
d373620
 
204176c
d373620
 
 
 
 
 
 
 
 
 
 
204176c
4c95d04
5234a64
4c95d04
 
fcdea18
975f9c6
d373620
975f9c6
 
5234a64
d373620
5234a64
204176c
 
0f29b7c
204176c
975f9c6
4c95d04
 
 
204176c
 
d373620
 
 
 
 
 
 
 
 
 
 
 
204176c
 
 
d373620
 
204176c
4c95d04
d373620
 
 
204176c
 
d373620
204176c
d373620
 
204176c
d373620
 
 
204176c
 
d373620
 
 
204176c
 
 
c7e59f2
8ccdb60
 
2b694be
d373620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204176c
d373620
 
 
204176c
d373620
204176c
d373620
 
 
 
 
204176c
d373620
 
 
 
 
 
 
 
 
 
204176c
d373620
 
204176c
d373620
 
 
 
 
 
 
 
 
975f9c6
8ccdb60
d373620
385a153
975f9c6
 
 
6dfd01b
d373620
 
 
 
 
 
 
975f9c6
6dfd01b
975f9c6
d373620
385a153
975f9c6
 
d373620
4ec2c37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
from scipy.signal import convolve2d

# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR with English (enable GPU if available)
easyocr_reader = easyocr.Reader(['en'], gpu=False)

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Saves an image to the debug directory with a timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if len(img.shape) == 3:  # Color image
        cv2.imwrite(filename, img)
    else:  # Grayscale image
        cv2.imwrite(filename, img)
    logging.debug(f"Saved debug image: {filename}")

def estimate_brightness(img):
    """Estimate image brightness to adjust processing"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    brightness = np.mean(gray)
    logging.debug(f"Estimated brightness: {brightness}")
    return brightness

def deblur_image(img):
    """Apply deconvolution to reduce blur (approximate Wiener filter)"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Create a simple point spread function (PSF) for deblurring
    psf = np.ones((5, 5)) / 25
    # Normalize image to float32
    img_float = gray.astype(np.float32) / 255.0
    # Convolve with PSF (simulate blur)
    img_blurred = convolve2d(img_float, psf, mode='same')
    # Avoid division by zero
    img_blurred = np.where(img_blurred == 0, 1e-10, img_blurred)
    # Deconvolve
    img_deblurred = img_float / img_blurred
    img_deblurred = np.clip(img_deblurred * 255, 0, 255).astype(np.uint8)
    save_debug_image(img_deblurred, "00_deblurred")
    return img_deblurred

def preprocess_image(img):
    """Enhance contrast, brightness, reduce noise, and deblur for digit detection"""
    # Deblur first
    deblurred = deblur_image(img)
    
    # Convert to PIL for enhancement
    pil_img = Image.fromarray(deblurred)
    pil_img = ImageEnhance.Contrast(pil_img).enhance(2.5)  # Aggressive contrast
    pil_img = ImageEnhance.Brightness(pil_img).enhance(1.5)  # Stronger brightness
    img_enhanced = np.array(pil_img)
    save_debug_image(img_enhanced, "00_preprocessed_pil")

    # Apply CLAHE for local contrast enhancement
    clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
    enhanced = clahe.apply(img_enhanced)
    save_debug_image(enhanced, "00_clahe_enhanced")

    # Aggressive noise reduction
    filtered = cv2.bilateralFilter(enhanced, d=15, sigmaColor=150, sigmaSpace=150)
    save_debug_image(filtered, "00_bilateral_filtered")
    return filtered

def normalize_image(img):
    """Resize image to standard dimensions while preserving aspect ratio"""
    h, w = img.shape[:2]
    target_height = 720
    aspect_ratio = w / h
    target_width = int(target_height * aspect_ratio)
    if target_width < 320:
        target_width = 320
        target_height = int(target_width / aspect_ratio)
    resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
    save_debug_image(resized, "00_normalized")
    logging.debug(f"Normalized image to {target_width}x{target_height}")
    return resized

def detect_roi(img):
    """Detect the digital display region, with fallback to full image"""
    try:
        save_debug_image(img, "01_original")
        gray = preprocess_image(img)
        save_debug_image(gray, "02_preprocessed_grayscale")

        # Try multiple thresholding methods
        brightness = estimate_brightness(img)
        if brightness > 120:
            thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                           cv2.THRESH_BINARY_INV, 41, 7)  # Inverted for bright displays
            save_debug_image(thresh, "03_roi_adaptive_threshold_high")
        else:
            _, thresh = cv2.threshold(gray, 20, 255, cv2.THRESH_BINARY_INV)  # Low threshold for dim displays
            save_debug_image(thresh, "03_roi_simple_threshold_low")

        # Morphological operations to connect digits
        kernel = np.ones((7, 7), np.uint8)
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
        save_debug_image(thresh, "03_roi_morph_cleaned")

        kernel = np.ones((15, 15), np.uint8)
        dilated = cv2.dilate(thresh, kernel, iterations=6)
        save_debug_image(dilated, "04_roi_dilated")

        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        if contours:
            img_area = img.shape[0] * img.shape[1]
            valid_contours = []
            for c in contours:
                area = cv2.contourArea(c)
                if 100 < area < (img_area * 0.999):  # Extremely relaxed area filter
                    x, y, w, h = cv2.boundingRect(c)
                    aspect_ratio = w / h if h > 0 else 0
                    if 0.3 <= aspect_ratio <= 15.0 and w > 20 and h > 10:  # Very relaxed filters
                        valid_contours.append(c)

            if valid_contours:
                contour = max(valid_contours, key=cv2.contourArea)
                x, y, w, h = cv2.boundingRect(contour)
                padding = 120  # Very generous padding
                x, y = max(0, x - padding), max(0, y - padding)
                w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
                roi_img = img[y:y+h, x:x+w]
                save_debug_image(roi_img, "05_detected_roi")
                logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
                return roi_img, (x, y, w, h)

        logging.info("No suitable ROI found, returning full image.")
        save_debug_image(img, "05_no_roi_full_fallback")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        save_debug_image(img, "05_roi_detection_error_fallback")
        return img, None

def detect_segments(digit_img):
    """Detect seven-segment patterns in a digit image"""
    h, w = digit_img.shape
    if h < 6 or w < 3:  # Extremely relaxed size constraints
        logging.debug(f"Digit image too small: {w}x{h}")
        return None

    segments = {
        'top': (int(w*0.05), int(w*0.95), 0, int(h*0.3)),
        'middle': (int(w*0.05), int(w*0.95), int(h*0.35), int(h*0.65)),
        'bottom': (int(w*0.05), int(w*0.95), int(h*0.7), h),
        'left_top': (0, int(w*0.35), int(h*0.05), int(h*0.55)),
        'left_bottom': (0, int(w*0.35), int(h*0.45), int(h*0.95)),
        'right_top': (int(w*0.65), w, int(h*0.05), int(h*0.55)),
        'right_bottom': (int(w*0.65), w, int(h*0.45), int(h*0.95))
    }

    segment_presence = {}
    for name, (x1, x2, y1, y2) in segments.items():
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(w, x2), min(h, y2)
        region = digit_img[y1:y2, x1:x2]
        if region.size == 0:
            segment_presence[name] = False
            continue
        pixel_count = np.sum(region == 255)
        total_pixels = region.size
        segment_presence[name] = pixel_count / total_pixels > 0.25  # Very low threshold
        logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")

    digit_patterns = {
        '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '1': ('right_top', 'right_bottom'),
        '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
        '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
        '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
        '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
        '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
        '7': ('top', 'right_top', 'right_bottom'),
        '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
    }

    best_match = None
    max_score = -1
    for digit, pattern in digit_patterns.items():
        matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
        non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
        current_score = matches - non_matches_penalty
        if all(segment_presence.get(s, False) for s in pattern):
            current_score += 0.5
        if current_score > max_score:
            max_score = current_score
            best_match = digit
        elif current_score == max_score and best_match is not None:
            current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
            best_digit_pattern = digit_patterns[best_match]
            best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
            if current_digit_non_matches < best_digit_non_matches:
                best_match = digit
    
    logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
    return best_match

def custom_seven_segment_ocr(img, roi_bbox):
    """Perform custom OCR for seven-segment displays"""
    try:
        gray = preprocess_image(img)
        brightness = estimate_brightness(img)
        # Multiple thresholding approaches
        if brightness > 120:
            _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
            save_debug_image(thresh, "06_roi_otsu_threshold")
        else:
            _, thresh = cv2.threshold(gray, 15, 255, cv2.THRESH_BINARY_INV)  # Very low threshold
            save_debug_image(thresh, "06_roi_simple_threshold")
        
        # Morphological cleaning
        kernel = np.ones((5, 5), np.uint8)
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
        save_debug_image(thresh, "06_roi_morph_cleaned")

        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                         contrast_ths=0.05, adjust_contrast=1.2, 
                                         text_threshold=0.2, mag_ratio=6.0, 
                                         allowlist='0123456789.-', y_ths=0.7)
        
        logging.info(f"Custom OCR EasyOCR results: {results}")
        if not results:
            logging.info("Custom OCR EasyOCR found no digits.")
            return None

        digits_info = []
        for (bbox, text, conf) in results:
            (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
            h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
            if len(text) <= 2 and any(c in '0123456789.-' for c in text) and h_bbox > 3:
                x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
                y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
                digits_info.append((x_min, x_max, y_min, y_max, text, conf))

        digits_info.sort(key=lambda x: x[0])
        recognized_text = ""
        for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
            x_min, y_min = max(0, x_min), max(0, y_min)
            x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
            if x_max <= x_min or y_max <= y_min:
                continue
            digit_img_crop = thresh[y_min:y_max, x_min:x_max]
            save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
            if easyocr_conf > 0.7 or easyocr_char in '.-' or digit_img_crop.shape[0] < 6 or digit_img_crop.shape[1] < 3:
                recognized_text += easyocr_char
            else:
                digit_from_segments = detect_segments(digit_img_crop)
                if digit_from_segments:
                    recognized_text += digit_from_segments
                else:
                    recognized_text += easyocr_char
        
        logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}")
        if recognized_text:
            return recognized_text
        logging.info(f"Custom OCR text '{recognized_text}' is empty.")
        return None
    except Exception as e:
        logging.error(f"Custom seven-segment OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    """Extract weight from a PIL image of a digital scale display"""
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        save_debug_image(img, "00_input_image")

        # Normalize image dimensions
        img = normalize_image(img)
        brightness = estimate_brightness(img)
        conf_threshold = 0.2 if brightness > 120 else 0.1

        roi_img, roi_bbox = detect_roi(img)
        custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
        if custom_result:
            logging.info(f"Raw custom OCR result: {custom_result}")
            # Minimal cleaning
            text = re.sub(r"[^\d\.\-]", "", custom_result)  # Allow negative signs
            if text.count('.') > 1:
                text = text.replace('.', '', text.count('.') - 1)
            if text:
                if text.startswith('.'):
                    text = "0" + text
                if text.endswith('.'):
                    text = text.rstrip('.')
                if text == '.' or text == '':
                    logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.")
                else:
                    try:
                        weight = float(text)
                        logging.info(f"Custom OCR result: {text}, Confidence: 90.0%")
                        return text, 90.0
                    except ValueError:
                        logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.")
            logging.warning(f"Custom OCR result '{custom_result}' failed cleaning, falling back.")

        logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
        processed_roi_img = preprocess_image(roi_img)
        
        # Multiple thresholding approaches
        if brightness > 120:
            thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                           cv2.THRESH_BINARY_INV, 51, 9)
            save_debug_image(thresh, "09_fallback_adaptive_thresh")
        else:
            _, thresh = cv2.threshold(processed_roi_img, 15, 255, cv2.THRESH_BINARY_INV)
            save_debug_image(thresh, "09_fallback_simple_thresh")

        # Morphological cleaning
        kernel = np.ones((5, 5), np.uint8)
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
        save_debug_image(thresh, "09_fallback_morph_cleaned")

        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                         contrast_ths=0.05, adjust_contrast=1.2, 
                                         text_threshold=0.1, mag_ratio=7.0, 
                                         allowlist='0123456789.-', batch_size=4, y_ths=0.8)

        best_weight = None
        best_conf = 0.0
        best_score = 0.0
        for (bbox, text, conf) in results:
            logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}")
            text = text.lower().strip()
            text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
            text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
            text = text.replace("s", "5").replace("S", "5")
            text = text.replace("g", "9").replace("G", "6")
            text = text.replace("l", "1").replace("I", "1").replace("|", "1")
            text = text.replace("b", "8").replace("B", "8")
            text = text.replace("z", "2").replace("Z", "2")
            text = text.replace("a", "4").replace("A", "4")
            text = text.replace("e", "3")
            text = text.replace("t", "7")
            text = text.replace("~", "").replace("`", "")
            text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
            text = re.sub(r"[^\d\.\-]", "", text)
            if text.count('.') > 1:
                parts = text.split('.')
                text = parts[0] + '.' + ''.join(parts[1:])
            text = text.strip('.')
            if len(text.replace('.', '').replace('-', '')) > 0:
                try:
                    weight = float(text)
                    range_score = 1.0
                    if -1000 <= weight <= 1000:  # Allow negative weights
                        range_score = 1.5
                    elif weight > 1000 and weight <= 2000:
                        range_score = 1.0
                    else:
                        range_score = 0.5
                    digit_count = len(text.replace('.', '').replace('-', ''))
                    digit_score = 1.0
                    if digit_count >= 2 and digit_count <= 6:
                        digit_score = 1.3
                    elif digit_count == 1:
                        digit_score = 0.8
                    score = conf * range_score * digit_score
                    if roi_bbox:
                        (x_roi, y_roi, w_roi, h_roi) = roi_bbox
                        roi_area = w_roi * h_roi
                        x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
                        x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
                        bbox_area = (x_max - x_min) * (y_max - y_min)
                        if roi_area > 0 and bbox_area / roi_area < 0.01:
                            score *= 0.5
                        bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
                        if bbox_aspect_ratio < 0.05:
                            score *= 0.7
                    if score > best_score and conf > conf_threshold:
                        best_weight = text
                        best_conf = conf
                        best_score = score
                        logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
                except ValueError:
                    logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
                    continue

        if not best_weight:
            logging.info("No valid weight detected after all attempts.")
            return "Not detected", 0.0

        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            dec_part = dec_part.rstrip('0')
            if not dec_part and int_part != "0":
                best_weight = int_part
            elif not dec_part and int_part == "0":
                best_weight = "0"
            else:
                best_weight = f"{int_part}.{dec_part}"
        else:
            best_weight = best_weight.lstrip('0') or "0"

        logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
        return "Not detected", 0.0