AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
2154cf1 verified
raw
history blame
2.13 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def enhance_image(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# CLAHE (adaptive histogram equalization for better contrast)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Sharpen image
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
sharpened = cv2.filter2D(contrast, -1, kernel)
# Resize if very small
h, w = sharpened.shape
if max(h, w) < 500:
sharpened = cv2.resize(sharpened, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
return sharpened
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # convert from PIL to OpenCV BGR
# Preprocess image
processed = enhance_image(img)
results = reader.readtext(processed)
best_weight = None
best_conf = 0.0
for (bbox, text, conf) in results:
original_text = text
text = text.lower().strip()
# Fix common OCR errors
text = text.replace(",", ".")
text = text.replace("o", "0").replace("O", "0")
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6")
text = text.replace("kgs", "").replace("kg", "")
text = re.sub(r"[^\d\.]", "", text)
if re.fullmatch(r"\d{1,4}(\.\d{1,3})?", text):
if conf > best_conf:
best_weight = text
best_conf = conf
if not best_weight:
return "Not detected", 0.0
# Format output
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip("0") or "0"
return best_weight, round(best_conf * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0