AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
4ec2c37 verified
raw
history blame
23.4 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)"""
try:
save_debug_image(img, "01_original")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
save_debug_image(gray, "02_grayscale")
brightness = estimate_brightness(img)
# Adaptive thresholding based on brightness
# For darker images, a lower threshold might be needed.
# For very bright images, a higher threshold.
# Tuned thresholds based on observed values
if brightness > 180:
thresh_value = 230
elif brightness > 100:
thresh_value = 190
else:
thresh_value = 150 # Even lower for very dark images
_, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
save_debug_image(thresh, f"03_roi_threshold_{thresh_value}")
# Increased kernel size for dilation to better connect segments of digits
# This helps in forming a solid contour for the display
kernel = np.ones((13, 13), np.uint8) # Slightly larger kernel
dilated = cv2.dilate(thresh, kernel, iterations=5) # Increased iterations for stronger connection
save_debug_image(dilated, "04_roi_dilated")
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Filter contours by a more robust area range and shape
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
# Filter out very small and very large contours (e.g., entire image, or noise)
if 1500 < area < (img_area * 0.9): # Increased min area, max area
x, y, w, h = cv2.boundingRect(c)
aspect_ratio = w / h
# Check for typical display aspect ratios and minimum size
if 2.0 <= aspect_ratio <= 5.5 and w > 100 and h > 50: # Adjusted aspect ratio and min size
valid_contours.append(c)
if valid_contours:
# Sort by area descending and iterate
for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
x, y, w, h = cv2.boundingRect(contour)
# Expand ROI to ensure full digits are captured and a small border
padding = 40 # Increased padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, returning original image for full image OCR attempt.")
save_debug_image(img, "05_no_roi_original_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_detection_error_fallback")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 15 or w < 10: # Increased minimum dimensions for a digit
return None
# Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
# Adjusted segment proportions for better robustness, more aggressive cropping
segments = {
'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)),
'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)),
'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)),
'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)),
'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
# Ensure coordinates are within bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
# Count white pixels in the region
pixel_count = np.sum(region == 255)
total_pixels = region.size
# Segment is present if a significant portion of the region is white
# Adjusted threshold for segment presence - higher for robustness
segment_presence[name] = pixel_count / total_pixels > 0.55 # Increased sensitivity further
# Seven-segment digit patterns - remain the same
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1 # Initialize with a lower value
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
# Penalize for segments that should NOT be present but are
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
# Prioritize digits with more matched segments and fewer incorrect segments
current_score = matches - non_matches_penalty
# Add a small bonus for matching exactly all required segments for the digit
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
# Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[best_digit_pattern]) # Corrected logic
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
# Debugging segment presence
# logging.debug(f"Digit Image Shape: {digit_img.shape}, Segments: {segment_presence}, Best Match: {best_match}")
# save_debug_image(digit_img, f"digit_segment_debug_{best_match or 'none'}", prefix="10_")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Adaptive thresholding for digits within ROI
# Using OTSU for automatic thresholding or a fixed value depending on brightness
brightness = estimate_brightness(img)
if brightness > 150:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
_, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY) # Lower threshold for darker displays
save_debug_image(thresh, "06_roi_thresh_for_digits")
# Use EasyOCR to get bounding boxes for digits
# Increased text_threshold for more confident digit detection
# Adjusted mag_ratio for better handling of digit sizes
# Added y_ths to reduce sensitivity to vertical position variations (common in scales)
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
text_threshold=0.85, mag_ratio=1.5, # Adjusted mag_ratio back, seems to work better for 7-seg
allowlist='0123456789.', y_ths=0.2) # Increased y_ths for row grouping tolerance
if not results:
logging.info("EasyOCR found no digits for custom seven-segment OCR.")
return None
# Sort bounding boxes left to right
digits_info = []
for (bbox, text, conf) in results:
# Ensure the text found by EasyOCR is a single digit or a decimal point
# Also filter by a minimum height of the bounding box for robustness
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1,y2,y3,y4) - min(y1,y2,y3,y4)
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 10: # Min height for bbox
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
# Sort by x_min (left to right)
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
# If EasyOCR is very confident about a digit or it's a decimal, use its result directly
# Or if the digit crop is too small for reliable segment detection
if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 20 or digit_img_crop.shape[1] < 15: # Lowered confidence for direct use
recognized_text += easyocr_char
else:
# Otherwise, try the segment detection
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
# If segment detection also fails, fall back to EasyOCR's less confident result
recognized_text += easyocr_char
# Validate the recognized text
text = recognized_text
text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
# Ensure there's at most one decimal point
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
# Basic validation for common weight formats (e.g., 75.5, 120.0, 5.0)
# Allow numbers to start with . (e.g., .5 -> 0.5) if it's the only character
if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text.replace('.', '')) > 0:
# Handle cases like ".5" -> "0.5"
if text.startswith('.') and len(text) > 1:
text = "0" + text
# Handle cases like "5." -> "5"
if text.endswith('.') and len(text) > 1:
text = text.rstrip('.')
# Ensure it's not just a single dot or empty after processing
if text == '.' or text == '':
return None
return text
logging.info(f"Custom OCR final text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
brightness = estimate_brightness(img)
# Adjust confidence threshold more dynamically
conf_threshold = 0.9 if brightness > 150 else (0.8 if brightness > 80 else 0.7) # Adjusted thresholds
# Detect ROI
roi_img, roi_bbox = detect_roi(img)
# Try custom seven-segment OCR first
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
# Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
if "." in custom_result:
int_part, dec_part = custom_result.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
custom_result = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
custom_result = "0"
else:
custom_result = f"{int_part}.{dec_part}"
else:
custom_result = custom_result.lstrip('0') or "0"
# Additional validation for custom result to ensure it's a valid number
try:
float(custom_result)
logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
return custom_result, 100.0 # High confidence for custom OCR
except ValueError:
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.")
custom_result = None # Force fallback
# Fallback to EasyOCR if custom OCR fails
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
# Apply more aggressive image processing for EasyOCR if custom OCR failed
processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
# Sharpening
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
save_debug_image(sharpened_roi, "08_fallback_sharpened")
# Apply adaptive thresholding to the sharpened image for better digit isolation
# Block size and C constant can be critical
processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 15, 3) # Adjusted block size and C
save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh")
# EasyOCR parameters for general text
# Adjusted parameters for better digit recognition
# added batch_size for potentially better performance on multiple texts
results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
contrast_ths=0.3, adjust_contrast=0.9,
text_threshold=0.6, mag_ratio=1.8, # Lowered text_threshold, increased mag_ratio
allowlist='0123456789.', batch_size=4, y_ths=0.3) # Increased y_ths
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
text = text.lower().strip()
# More robust character replacements
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") # Remove spaces
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4")
text = text.replace("e", "3")
text = text.replace("t", "7") # 't' can look like '7'
text = text.replace("~", "") # Common noise
text = text.replace("`", "")
# Remove common weight units and other non-numeric characters
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) # Added lbs
text = re.sub(r"[^\d\.]", "", text)
# Handle multiple decimal points (keep only the first one)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
# Clean up leading/trailing dots if any
text = text.strip('.')
# Validate the final text format
# Allow optional leading zero, and optional decimal with up to 3 places
if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0: # Ensure at least one digit
try:
weight = float(text)
# Refined scoring for weights within a reasonable range
range_score = 1.0
if 0.1 <= weight <= 250: # Very common personal scale range
range_score = 1.5
elif weight > 250 and weight <= 500: # Larger weights
range_score = 1.2
elif weight > 500 and weight <= 1000:
range_score = 1.0
else: # Very small or very large weights
range_score = 0.5
digit_count = len(text.replace('.', ''))
digit_score = 1.0
if digit_count >= 2 and digit_count <= 5: # Prefer weights with 2-5 digits (e.g., 5.0, 75.5, 123.4)
digit_score = 1.3
elif digit_count == 1: # Single digit weights less common but possible
digit_score = 0.8
score = conf * range_score * digit_score
# Also consider area of the bounding box relative to ROI for confidence
if roi_bbox:
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
roi_area = w_roi * h_roi
# Calculate bbox area accurately
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.03: # Very small bounding boxes might be noise
score *= 0.5
# Penalize if bbox is too narrow (e.g., single line detected as digit)
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
if bbox_aspect_ratio < 0.2: # Very thin bounding boxes
score *= 0.7
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
# Final formatting of the best detected weight
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
best_weight = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"
# Final check for extremely unlikely weights (e.g., 0.0001, 9999)
try:
final_float_weight = float(best_weight)
if final_float_weight < 0.01 or final_float_weight > 1000: # Adjust this range if needed
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
best_conf *= 0.5 # Reduce confidence for out-of-range values
except ValueError:
pass # Should not happen if previous parsing worked
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0