Spaces:
Running
Running
File size: 23,388 Bytes
975f9c6 5234a64 c7e59f2 5234a64 0bb13f0 781a117 5234a64 c7e59f2 0f29b7c 975f9c6 2b694be 5234a64 c7e59f2 5234a64 c7e59f2 0f29b7c 781a117 c7e59f2 0f29b7c c7e59f2 781a117 c7e59f2 781a117 2b694be 781a117 2b694be c7e59f2 2b694be 781a117 7c31f9a 781a117 c7e59f2 781a117 c7e59f2 4c95d04 2b694be c7e59f2 4c95d04 781a117 4c95d04 c7e59f2 4c95d04 c7e59f2 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 c7e59f2 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 c7e59f2 781a117 c7e59f2 4c95d04 2b694be 781a117 c7e59f2 4c95d04 781a117 c7e59f2 4c95d04 781a117 c7e59f2 4c95d04 781a117 4c95d04 781a117 c7e59f2 781a117 4c95d04 781a117 4c95d04 c7e59f2 781a117 4c95d04 781a117 c7e59f2 781a117 c7e59f2 781a117 4c95d04 781a117 c7e59f2 4c95d04 c7e59f2 4c95d04 5234a64 4c95d04 fcdea18 975f9c6 5234a64 0f29b7c 781a117 c7e59f2 975f9c6 2b694be 4c95d04 781a117 4c95d04 781a117 4c95d04 c7e59f2 4c95d04 781a117 c7e59f2 4c95d04 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 975f9c6 781a117 c7e59f2 8ccdb60 2b694be 781a117 2b694be 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 c7e59f2 781a117 975f9c6 8ccdb60 781a117 385a153 975f9c6 781a117 975f9c6 781a117 c7e59f2 781a117 975f9c6 781a117 975f9c6 c7e59f2 781a117 385a153 975f9c6 c7e59f2 4ec2c37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)"""
try:
save_debug_image(img, "01_original")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
save_debug_image(gray, "02_grayscale")
brightness = estimate_brightness(img)
# Adaptive thresholding based on brightness
# For darker images, a lower threshold might be needed.
# For very bright images, a higher threshold.
# Tuned thresholds based on observed values
if brightness > 180:
thresh_value = 230
elif brightness > 100:
thresh_value = 190
else:
thresh_value = 150 # Even lower for very dark images
_, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
save_debug_image(thresh, f"03_roi_threshold_{thresh_value}")
# Increased kernel size for dilation to better connect segments of digits
# This helps in forming a solid contour for the display
kernel = np.ones((13, 13), np.uint8) # Slightly larger kernel
dilated = cv2.dilate(thresh, kernel, iterations=5) # Increased iterations for stronger connection
save_debug_image(dilated, "04_roi_dilated")
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Filter contours by a more robust area range and shape
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
# Filter out very small and very large contours (e.g., entire image, or noise)
if 1500 < area < (img_area * 0.9): # Increased min area, max area
x, y, w, h = cv2.boundingRect(c)
aspect_ratio = w / h
# Check for typical display aspect ratios and minimum size
if 2.0 <= aspect_ratio <= 5.5 and w > 100 and h > 50: # Adjusted aspect ratio and min size
valid_contours.append(c)
if valid_contours:
# Sort by area descending and iterate
for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
x, y, w, h = cv2.boundingRect(contour)
# Expand ROI to ensure full digits are captured and a small border
padding = 40 # Increased padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, returning original image for full image OCR attempt.")
save_debug_image(img, "05_no_roi_original_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_detection_error_fallback")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 15 or w < 10: # Increased minimum dimensions for a digit
return None
# Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
# Adjusted segment proportions for better robustness, more aggressive cropping
segments = {
'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)),
'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)),
'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)),
'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)),
'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
# Ensure coordinates are within bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
# Count white pixels in the region
pixel_count = np.sum(region == 255)
total_pixels = region.size
# Segment is present if a significant portion of the region is white
# Adjusted threshold for segment presence - higher for robustness
segment_presence[name] = pixel_count / total_pixels > 0.55 # Increased sensitivity further
# Seven-segment digit patterns - remain the same
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1 # Initialize with a lower value
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
# Penalize for segments that should NOT be present but are
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
# Prioritize digits with more matched segments and fewer incorrect segments
current_score = matches - non_matches_penalty
# Add a small bonus for matching exactly all required segments for the digit
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
# Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[best_digit_pattern]) # Corrected logic
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
# Debugging segment presence
# logging.debug(f"Digit Image Shape: {digit_img.shape}, Segments: {segment_presence}, Best Match: {best_match}")
# save_debug_image(digit_img, f"digit_segment_debug_{best_match or 'none'}", prefix="10_")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Adaptive thresholding for digits within ROI
# Using OTSU for automatic thresholding or a fixed value depending on brightness
brightness = estimate_brightness(img)
if brightness > 150:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
_, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY) # Lower threshold for darker displays
save_debug_image(thresh, "06_roi_thresh_for_digits")
# Use EasyOCR to get bounding boxes for digits
# Increased text_threshold for more confident digit detection
# Adjusted mag_ratio for better handling of digit sizes
# Added y_ths to reduce sensitivity to vertical position variations (common in scales)
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
text_threshold=0.85, mag_ratio=1.5, # Adjusted mag_ratio back, seems to work better for 7-seg
allowlist='0123456789.', y_ths=0.2) # Increased y_ths for row grouping tolerance
if not results:
logging.info("EasyOCR found no digits for custom seven-segment OCR.")
return None
# Sort bounding boxes left to right
digits_info = []
for (bbox, text, conf) in results:
# Ensure the text found by EasyOCR is a single digit or a decimal point
# Also filter by a minimum height of the bounding box for robustness
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1,y2,y3,y4) - min(y1,y2,y3,y4)
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 10: # Min height for bbox
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
# Sort by x_min (left to right)
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
# If EasyOCR is very confident about a digit or it's a decimal, use its result directly
# Or if the digit crop is too small for reliable segment detection
if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 20 or digit_img_crop.shape[1] < 15: # Lowered confidence for direct use
recognized_text += easyocr_char
else:
# Otherwise, try the segment detection
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
# If segment detection also fails, fall back to EasyOCR's less confident result
recognized_text += easyocr_char
# Validate the recognized text
text = recognized_text
text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
# Ensure there's at most one decimal point
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
# Basic validation for common weight formats (e.g., 75.5, 120.0, 5.0)
# Allow numbers to start with . (e.g., .5 -> 0.5) if it's the only character
if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text.replace('.', '')) > 0:
# Handle cases like ".5" -> "0.5"
if text.startswith('.') and len(text) > 1:
text = "0" + text
# Handle cases like "5." -> "5"
if text.endswith('.') and len(text) > 1:
text = text.rstrip('.')
# Ensure it's not just a single dot or empty after processing
if text == '.' or text == '':
return None
return text
logging.info(f"Custom OCR final text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
brightness = estimate_brightness(img)
# Adjust confidence threshold more dynamically
conf_threshold = 0.9 if brightness > 150 else (0.8 if brightness > 80 else 0.7) # Adjusted thresholds
# Detect ROI
roi_img, roi_bbox = detect_roi(img)
# Try custom seven-segment OCR first
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
# Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
if "." in custom_result:
int_part, dec_part = custom_result.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
custom_result = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
custom_result = "0"
else:
custom_result = f"{int_part}.{dec_part}"
else:
custom_result = custom_result.lstrip('0') or "0"
# Additional validation for custom result to ensure it's a valid number
try:
float(custom_result)
logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
return custom_result, 100.0 # High confidence for custom OCR
except ValueError:
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.")
custom_result = None # Force fallback
# Fallback to EasyOCR if custom OCR fails
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
# Apply more aggressive image processing for EasyOCR if custom OCR failed
processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
# Sharpening
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
save_debug_image(sharpened_roi, "08_fallback_sharpened")
# Apply adaptive thresholding to the sharpened image for better digit isolation
# Block size and C constant can be critical
processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 15, 3) # Adjusted block size and C
save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh")
# EasyOCR parameters for general text
# Adjusted parameters for better digit recognition
# added batch_size for potentially better performance on multiple texts
results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
contrast_ths=0.3, adjust_contrast=0.9,
text_threshold=0.6, mag_ratio=1.8, # Lowered text_threshold, increased mag_ratio
allowlist='0123456789.', batch_size=4, y_ths=0.3) # Increased y_ths
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
text = text.lower().strip()
# More robust character replacements
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") # Remove spaces
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4")
text = text.replace("e", "3")
text = text.replace("t", "7") # 't' can look like '7'
text = text.replace("~", "") # Common noise
text = text.replace("`", "")
# Remove common weight units and other non-numeric characters
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) # Added lbs
text = re.sub(r"[^\d\.]", "", text)
# Handle multiple decimal points (keep only the first one)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
# Clean up leading/trailing dots if any
text = text.strip('.')
# Validate the final text format
# Allow optional leading zero, and optional decimal with up to 3 places
if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0: # Ensure at least one digit
try:
weight = float(text)
# Refined scoring for weights within a reasonable range
range_score = 1.0
if 0.1 <= weight <= 250: # Very common personal scale range
range_score = 1.5
elif weight > 250 and weight <= 500: # Larger weights
range_score = 1.2
elif weight > 500 and weight <= 1000:
range_score = 1.0
else: # Very small or very large weights
range_score = 0.5
digit_count = len(text.replace('.', ''))
digit_score = 1.0
if digit_count >= 2 and digit_count <= 5: # Prefer weights with 2-5 digits (e.g., 5.0, 75.5, 123.4)
digit_score = 1.3
elif digit_count == 1: # Single digit weights less common but possible
digit_score = 0.8
score = conf * range_score * digit_score
# Also consider area of the bounding box relative to ROI for confidence
if roi_bbox:
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
roi_area = w_roi * h_roi
# Calculate bbox area accurately
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.03: # Very small bounding boxes might be noise
score *= 0.5
# Penalize if bbox is too narrow (e.g., single line detected as digit)
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
if bbox_aspect_ratio < 0.2: # Very thin bounding boxes
score *= 0.7
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
# Final formatting of the best detected weight
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
best_weight = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"
# Final check for extremely unlikely weights (e.g., 0.0001, 9999)
try:
final_float_weight = float(best_weight)
if final_float_weight < 0.01 or final_float_weight > 1000: # Adjust this range if needed
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
best_conf *= 0.5 # Reduce confidence for out-of-range values
except ValueError:
pass # Should not happen if previous parsing worked
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0 |