File size: 23,388 Bytes
975f9c6
 
 
 
5234a64
c7e59f2
 
5234a64
 
 
 
0bb13f0
781a117
 
5234a64
 
c7e59f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f29b7c
 
 
 
975f9c6
2b694be
 
5234a64
c7e59f2
5234a64
c7e59f2
 
0f29b7c
781a117
 
 
 
c7e59f2
 
 
 
 
 
 
 
0f29b7c
c7e59f2
781a117
 
c7e59f2
 
 
 
781a117
2b694be
781a117
2b694be
c7e59f2
 
 
 
 
 
 
 
 
 
 
 
 
2b694be
781a117
7c31f9a
 
781a117
c7e59f2
 
 
 
 
 
 
 
 
781a117
c7e59f2
 
4c95d04
2b694be
 
c7e59f2
4c95d04
 
 
 
 
781a117
4c95d04
 
 
c7e59f2
4c95d04
c7e59f2
 
 
 
 
 
 
4c95d04
 
 
 
781a117
 
 
 
4c95d04
 
781a117
 
 
4c95d04
 
 
781a117
 
c7e59f2
 
4c95d04
781a117
4c95d04
 
 
 
 
 
 
 
 
 
 
 
 
 
781a117
 
4c95d04
 
781a117
 
 
 
 
 
 
 
 
 
 
 
 
4c95d04
781a117
 
 
 
c7e59f2
781a117
 
c7e59f2
 
 
 
4c95d04
 
 
 
 
2b694be
 
781a117
 
 
 
 
 
 
c7e59f2
 
 
4c95d04
781a117
 
c7e59f2
4c95d04
781a117
c7e59f2
 
4c95d04
 
781a117
4c95d04
 
 
781a117
 
 
c7e59f2
 
 
 
781a117
 
 
4c95d04
781a117
 
4c95d04
 
c7e59f2
781a117
 
 
4c95d04
 
781a117
 
c7e59f2
 
781a117
c7e59f2
 
781a117
 
 
 
 
 
 
 
 
 
4c95d04
 
781a117
 
 
 
 
 
c7e59f2
 
 
 
 
 
 
 
 
 
 
 
 
4c95d04
c7e59f2
4c95d04
5234a64
4c95d04
 
fcdea18
975f9c6
 
 
5234a64
 
0f29b7c
781a117
c7e59f2
975f9c6
2b694be
4c95d04
781a117
4c95d04
 
 
781a117
4c95d04
 
 
c7e59f2
 
 
 
 
 
 
4c95d04
 
781a117
c7e59f2
 
 
 
 
 
 
 
4c95d04
 
c7e59f2
781a117
 
 
 
 
 
 
 
 
c7e59f2
781a117
 
c7e59f2
781a117
c7e59f2
 
975f9c6
781a117
 
 
 
 
c7e59f2
 
 
8ccdb60
 
2b694be
 
781a117
 
2b694be
781a117
c7e59f2
 
781a117
c7e59f2
 
781a117
 
c7e59f2
 
 
 
 
781a117
 
c7e59f2
781a117
 
 
 
 
 
 
c7e59f2
 
 
781a117
c7e59f2
 
781a117
 
 
 
c7e59f2
 
 
781a117
c7e59f2
 
781a117
c7e59f2
781a117
 
 
c7e59f2
781a117
c7e59f2
 
781a117
 
 
 
 
c7e59f2
 
 
 
 
 
 
 
781a117
c7e59f2
 
 
 
 
781a117
 
 
 
 
c7e59f2
781a117
 
c7e59f2
781a117
975f9c6
8ccdb60
781a117
385a153
975f9c6
781a117
975f9c6
 
781a117
 
c7e59f2
781a117
 
 
 
 
 
975f9c6
781a117
975f9c6
c7e59f2
 
 
 
 
 
 
 
 
781a117
385a153
975f9c6
 
c7e59f2
4ec2c37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os

# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Saves an image to the debug directory with a timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if len(img.shape) == 3: # Color image
        cv2.imwrite(filename, img)
    else: # Grayscale image
        cv2.imwrite(filename, img)
    logging.info(f"Saved debug image: {filename}")


def estimate_brightness(img):
    """Estimate image brightness to detect illuminated displays"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def detect_roi(img):
    """Detect and crop the region of interest (likely the digital display)"""
    try:
        save_debug_image(img, "01_original")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        save_debug_image(gray, "02_grayscale")
        
        brightness = estimate_brightness(img)

        # Adaptive thresholding based on brightness
        # For darker images, a lower threshold might be needed.
        # For very bright images, a higher threshold.
        # Tuned thresholds based on observed values
        if brightness > 180:
            thresh_value = 230
        elif brightness > 100:
            thresh_value = 190
        else:
            thresh_value = 150 # Even lower for very dark images
            
        _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
        save_debug_image(thresh, f"03_roi_threshold_{thresh_value}")
        
        # Increased kernel size for dilation to better connect segments of digits
        # This helps in forming a solid contour for the display
        kernel = np.ones((13, 13), np.uint8) # Slightly larger kernel
        dilated = cv2.dilate(thresh, kernel, iterations=5) # Increased iterations for stronger connection
        save_debug_image(dilated, "04_roi_dilated")
        
        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        if contours:
            # Filter contours by a more robust area range and shape
            img_area = img.shape[0] * img.shape[1]
            valid_contours = []
            for c in contours:
                area = cv2.contourArea(c)
                # Filter out very small and very large contours (e.g., entire image, or noise)
                if 1500 < area < (img_area * 0.9): # Increased min area, max area
                    x, y, w, h = cv2.boundingRect(c)
                    aspect_ratio = w / h
                    # Check for typical display aspect ratios and minimum size
                    if 2.0 <= aspect_ratio <= 5.5 and w > 100 and h > 50: # Adjusted aspect ratio and min size
                        valid_contours.append(c)

            if valid_contours:
                # Sort by area descending and iterate
                for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
                    x, y, w, h = cv2.boundingRect(contour)
                    
                    # Expand ROI to ensure full digits are captured and a small border
                    padding = 40 # Increased padding
                    x, y = max(0, x - padding), max(0, y - padding)
                    w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
                    
                    roi_img = img[y:y+h, x:x+w]
                    save_debug_image(roi_img, "05_detected_roi")
                    logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
                    return roi_img, (x, y, w, h)
        
        logging.info("No suitable ROI found, returning original image for full image OCR attempt.")
        save_debug_image(img, "05_no_roi_original_fallback")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        save_debug_image(img, "05_roi_detection_error_fallback")
        return img, None

def detect_segments(digit_img):
    """Detect seven-segment patterns in a digit image"""
    h, w = digit_img.shape
    if h < 15 or w < 10: # Increased minimum dimensions for a digit
        return None

    # Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
    # Adjusted segment proportions for better robustness, more aggressive cropping
    segments = {
        'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
        'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)),
        'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
        'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)),
        'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)),
        'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)),
        'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95))
    }

    segment_presence = {}
    for name, (x1, x2, y1, y2) in segments.items():
        # Ensure coordinates are within bounds
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(w, x2), min(h, y2)
        
        region = digit_img[y1:y2, x1:x2]
        if region.size == 0:
            segment_presence[name] = False
            continue
        
        # Count white pixels in the region
        pixel_count = np.sum(region == 255)
        total_pixels = region.size
        
        # Segment is present if a significant portion of the region is white
        # Adjusted threshold for segment presence - higher for robustness
        segment_presence[name] = pixel_count / total_pixels > 0.55 # Increased sensitivity further

    # Seven-segment digit patterns - remain the same
    digit_patterns = {
        '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '1': ('right_top', 'right_bottom'),
        '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
        '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
        '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
        '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
        '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
        '7': ('top', 'right_top', 'right_bottom'),
        '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
    }

    best_match = None
    max_score = -1 # Initialize with a lower value

    for digit, pattern in digit_patterns.items():
        matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
        
        # Penalize for segments that should NOT be present but are
        non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
        
        # Prioritize digits with more matched segments and fewer incorrect segments
        current_score = matches - non_matches_penalty
        
        # Add a small bonus for matching exactly all required segments for the digit
        if all(segment_presence.get(s, False) for s in pattern):
            current_score += 0.5 

        if current_score > max_score:
            max_score = current_score
            best_match = digit
        elif current_score == max_score and best_match is not None:
            # Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
            current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
            best_digit_pattern = digit_patterns[best_match]
            best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[best_digit_pattern]) # Corrected logic
            if current_digit_non_matches < best_digit_non_matches:
                best_match = digit
    
    # Debugging segment presence
    # logging.debug(f"Digit Image Shape: {digit_img.shape}, Segments: {segment_presence}, Best Match: {best_match}")
    # save_debug_image(digit_img, f"digit_segment_debug_{best_match or 'none'}", prefix="10_")

    return best_match

def custom_seven_segment_ocr(img, roi_bbox):
    """Perform custom OCR for seven-segment displays"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        # Adaptive thresholding for digits within ROI
        # Using OTSU for automatic thresholding or a fixed value depending on brightness
        brightness = estimate_brightness(img)
        if brightness > 150:
            _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        else:
            _, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY) # Lower threshold for darker displays
        save_debug_image(thresh, "06_roi_thresh_for_digits")

        # Use EasyOCR to get bounding boxes for digits
        # Increased text_threshold for more confident digit detection
        # Adjusted mag_ratio for better handling of digit sizes
        # Added y_ths to reduce sensitivity to vertical position variations (common in scales)
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                        contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
                                        text_threshold=0.85, mag_ratio=1.5, # Adjusted mag_ratio back, seems to work better for 7-seg
                                        allowlist='0123456789.', y_ths=0.2) # Increased y_ths for row grouping tolerance

        if not results:
            logging.info("EasyOCR found no digits for custom seven-segment OCR.")
            return None

        # Sort bounding boxes left to right
        digits_info = []
        for (bbox, text, conf) in results:
            # Ensure the text found by EasyOCR is a single digit or a decimal point
            # Also filter by a minimum height of the bounding box for robustness
            (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
            h_bbox = max(y1,y2,y3,y4) - min(y1,y2,y3,y4)
            if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 10: # Min height for bbox
                x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
                y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
                digits_info.append((x_min, x_max, y_min, y_max, text, conf))

        # Sort by x_min (left to right)
        digits_info.sort(key=lambda x: x[0]) 

        recognized_text = ""
        for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
            x_min, y_min = max(0, x_min), max(0, y_min)
            x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
            
            if x_max <= x_min or y_max <= y_min:
                continue
            
            digit_img_crop = thresh[y_min:y_max, x_min:x_max]
            save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")

            # If EasyOCR is very confident about a digit or it's a decimal, use its result directly
            # Or if the digit crop is too small for reliable segment detection
            if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 20 or digit_img_crop.shape[1] < 15: # Lowered confidence for direct use
                recognized_text += easyocr_char
            else:
                # Otherwise, try the segment detection
                digit_from_segments = detect_segments(digit_img_crop)
                if digit_from_segments:
                    recognized_text += digit_from_segments
                else:
                    # If segment detection also fails, fall back to EasyOCR's less confident result
                    recognized_text += easyocr_char
            
        # Validate the recognized text
        text = recognized_text
        text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
        
        # Ensure there's at most one decimal point
        if text.count('.') > 1:
            text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
        
        # Basic validation for common weight formats (e.g., 75.5, 120.0, 5.0)
        # Allow numbers to start with . (e.g., .5 -> 0.5) if it's the only character
        if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text.replace('.', '')) > 0:
            # Handle cases like ".5" -> "0.5"
            if text.startswith('.') and len(text) > 1:
                text = "0" + text
            # Handle cases like "5." -> "5"
            if text.endswith('.') and len(text) > 1:
                text = text.rstrip('.')
            
            # Ensure it's not just a single dot or empty after processing
            if text == '.' or text == '':
                return None
            return text
        logging.info(f"Custom OCR final text '{recognized_text}' failed validation.")
        return None
    except Exception as e:
        logging.error(f"Custom seven-segment OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        brightness = estimate_brightness(img)
        # Adjust confidence threshold more dynamically
        conf_threshold = 0.9 if brightness > 150 else (0.8 if brightness > 80 else 0.7) # Adjusted thresholds

        # Detect ROI
        roi_img, roi_bbox = detect_roi(img)
        
        # Try custom seven-segment OCR first
        custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
        if custom_result:
            # Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
            if "." in custom_result:
                int_part, dec_part = custom_result.split(".")
                int_part = int_part.lstrip("0") or "0"
                dec_part = dec_part.rstrip('0')
                if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
                    custom_result = int_part
                elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
                    custom_result = "0"
                else:
                    custom_result = f"{int_part}.{dec_part}"
            else:
                custom_result = custom_result.lstrip('0') or "0"
            
            # Additional validation for custom result to ensure it's a valid number
            try:
                float(custom_result)
                logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
                return custom_result, 100.0  # High confidence for custom OCR
            except ValueError:
                logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.")
                custom_result = None # Force fallback

        # Fallback to EasyOCR if custom OCR fails
        logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
        
        # Apply more aggressive image processing for EasyOCR if custom OCR failed
        processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
        
        # Sharpening
        kernel_sharpening = np.array([[-1,-1,-1], 
                                      [-1,9,-1], 
                                      [-1,-1,-1]])
        sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
        save_debug_image(sharpened_roi, "08_fallback_sharpened")

        # Apply adaptive thresholding to the sharpened image for better digit isolation
        # Block size and C constant can be critical
        processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                                        cv2.THRESH_BINARY, 15, 3) # Adjusted block size and C
        save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh")

        # EasyOCR parameters for general text
        # Adjusted parameters for better digit recognition
        # added batch_size for potentially better performance on multiple texts
        results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False, 
                                        contrast_ths=0.3, adjust_contrast=0.9, 
                                        text_threshold=0.6, mag_ratio=1.8, # Lowered text_threshold, increased mag_ratio
                                        allowlist='0123456789.', batch_size=4, y_ths=0.3) # Increased y_ths

        best_weight = None
        best_conf = 0.0
        best_score = 0.0

        for (bbox, text, conf) in results:
            text = text.lower().strip()
            
            # More robust character replacements
            text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") # Remove spaces
            text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0") 
            text = text.replace("s", "5").replace("S", "5")
            text = text.replace("g", "9").replace("G", "6") 
            text = text.replace("l", "1").replace("I", "1").replace("|", "1") 
            text = text.replace("b", "8").replace("B", "8")
            text = text.replace("z", "2").replace("Z", "2")
            text = text.replace("a", "4").replace("A", "4") 
            text = text.replace("e", "3") 
            text = text.replace("t", "7") # 't' can look like '7'
            text = text.replace("~", "") # Common noise
            text = text.replace("`", "")

            # Remove common weight units and other non-numeric characters
            text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) # Added lbs
            text = re.sub(r"[^\d\.]", "", text)

            # Handle multiple decimal points (keep only the first one)
            if text.count('.') > 1:
                parts = text.split('.')
                text = parts[0] + '.' + ''.join(parts[1:])
            
            # Clean up leading/trailing dots if any
            text = text.strip('.')

            # Validate the final text format
            # Allow optional leading zero, and optional decimal with up to 3 places
            if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0: # Ensure at least one digit
                try:
                    weight = float(text)
                    # Refined scoring for weights within a reasonable range
                    range_score = 1.0
                    if 0.1 <= weight <= 250: # Very common personal scale range
                        range_score = 1.5
                    elif weight > 250 and weight <= 500: # Larger weights
                        range_score = 1.2
                    elif weight > 500 and weight <= 1000:
                        range_score = 1.0
                    else: # Very small or very large weights
                        range_score = 0.5
                    
                    digit_count = len(text.replace('.', ''))
                    digit_score = 1.0
                    if digit_count >= 2 and digit_count <= 5: # Prefer weights with 2-5 digits (e.g., 5.0, 75.5, 123.4)
                        digit_score = 1.3
                    elif digit_count == 1: # Single digit weights less common but possible
                        digit_score = 0.8
                    
                    score = conf * range_score * digit_score
                    
                    # Also consider area of the bounding box relative to ROI for confidence
                    if roi_bbox:
                        (x_roi, y_roi, w_roi, h_roi) = roi_bbox
                        roi_area = w_roi * h_roi
                        # Calculate bbox area accurately
                        x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
                        x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
                        bbox_area = (x_max - x_min) * (y_max - y_min)
                        
                        if roi_area > 0 and bbox_area / roi_area < 0.03: # Very small bounding boxes might be noise
                            score *= 0.5 
                        
                        # Penalize if bbox is too narrow (e.g., single line detected as digit)
                        bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
                        if bbox_aspect_ratio < 0.2: # Very thin bounding boxes
                            score *= 0.7

                    if score > best_score and conf > conf_threshold:
                        best_weight = text
                        best_conf = conf
                        best_score = score
                        logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")

                except ValueError:
                    logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
                    continue

        if not best_weight:
            logging.info("No valid weight detected after all attempts.")
            return "Not detected", 0.0

        # Final formatting of the best detected weight
        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
            dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
            
            if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
                best_weight = int_part
            elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
                best_weight = "0"
            else:
                best_weight = f"{int_part}.{dec_part}"
        else:
            best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"

        # Final check for extremely unlikely weights (e.g., 0.0001, 9999)
        try:
            final_float_weight = float(best_weight)
            if final_float_weight < 0.01 or final_float_weight > 1000: # Adjust this range if needed
                logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
                best_conf *= 0.5 # Reduce confidence for out-of-range values
        except ValueError:
            pass # Should not happen if previous parsing worked

        logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
        return "Not detected", 0.0