Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import re | |
from paddleocr import PaddleOCR | |
from datetime import datetime | |
# Initialize OCR model once | |
ocr = PaddleOCR(use_angle_cls=True, lang='en') | |
# Preprocessing: Convert to grayscale and threshold | |
def preprocess_image(image): | |
img = np.array(image.convert("RGB")) | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
return Image.fromarray(thresh) | |
# OCR detection + regex filtering | |
def extract_weight_text(image): | |
results = ocr.ocr(np.array(image), cls=True) | |
for line in results[0]: | |
text = line[1][0] | |
match = re.search(r"\d+\.\d+", text) | |
if match: | |
return match.group() | |
return None | |
# Main function | |
def detect_weight(image): | |
if image is None: | |
return "No image uploaded.", "", None | |
pre_img = preprocess_image(image) | |
weight = extract_weight_text(pre_img) | |
if weight: | |
return f"Detected Weight: {weight} kg", datetime.now().strftime("Captured At: %Y-%m-%d %H:%M:%S"), pre_img | |
else: | |
return "Weight Not Detected", "", pre_img | |
# Gradio UI | |
interface = gr.Interface( | |
fn=detect_weight, | |
inputs=gr.Image(type="pil", label="Upload or Capture Image"), | |
outputs=[ | |
gr.Textbox(label="Weight"), | |
gr.Textbox(label="Timestamp"), | |
gr.Image(label="Preprocessed Image") | |
], | |
title="Auto Weight Logger", | |
description="Upload or click image of digital scale. It will detect and show the weight (kg).", | |
) | |
interface.launch() | |