AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
753fcb8 verified
raw
history blame
8.77 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
import pytesseract
# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR (enable GPU if available)
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.debug(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to adjust processing"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
logging.debug(f"Estimated brightness: {brightness}")
return brightness
def deblur_image(img):
"""Apply iterative sharpening to reduce blur"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Multiple sharpening passes
for _ in range(2):
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
gray = cv2.filter2D(gray, -1, kernel)
gray = np.clip(gray, 0, 255).astype(np.uint8)
save_debug_image(gray, "00_deblurred")
return gray
def preprocess_image(img):
"""Enhance image for digit detection under adverse conditions"""
# PIL enhancement
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
pil_img = ImageEnhance.Contrast(pil_img).enhance(3.0) # Extreme contrast
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.8) # Strong brightness
img_enhanced = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
save_debug_image(img_enhanced, "00_preprocessed_pil")
# Deblur
deblurred = deblur_image(img_enhanced)
# CLAHE for local contrast
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
enhanced = clahe.apply(deblurred)
save_debug_image(enhanced, "00_clahe_enhanced")
# Noise reduction
filtered = cv2.bilateralFilter(enhanced, d=17, sigmaColor=200, sigmaSpace=200)
save_debug_image(filtered, "00_bilateral_filtered")
# Morphological cleaning
kernel = np.ones((5, 5), np.uint8)
filtered = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel, iterations=2)
save_debug_image(filtered, "00_morph_cleaned")
return filtered
def normalize_image(img):
"""Resize image to ensure digits are detectable"""
h, w = img.shape[:2]
target_height = 1080 # High resolution for small digits
aspect_ratio = w / h
target_width = int(target_height * aspect_ratio)
if target_width < 480:
target_width = 480
target_height = int(target_width / aspect_ratio)
resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
save_debug_image(resized, "00_normalized")
logging.debug(f"Normalized image to {target_width}x{target_height}")
return resized
def tesseract_ocr(img):
"""Fallback OCR using Tesseract"""
try:
config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.-'
text = pytesseract.image_to_string(img, config=config).strip()
logging.info(f"Tesseract OCR raw text: {text}")
return text
except Exception as e:
logging.error(f"Tesseract OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract the actual weight shown in the image"""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
# Normalize image
img = normalize_image(img)
brightness = estimate_brightness(img)
conf_threshold = 0.1 # Very low threshold for blurry images
# Preprocess entire image (bypass ROI detection)
processed_img = preprocess_image(img)
save_debug_image(processed_img, "01_processed_full")
# Try multiple thresholding approaches
if brightness > 100:
thresh = cv2.adaptiveThreshold(processed_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 61, 11)
save_debug_image(thresh, "02_adaptive_threshold")
else:
_, thresh = cv2.threshold(processed_img, 10, 255, cv2.THRESH_BINARY_INV)
save_debug_image(thresh, "02_simple_threshold")
# Morphological operations
kernel = np.ones((7, 7), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
save_debug_image(thresh, "02_morph_cleaned")
# EasyOCR attempt
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.5,
text_threshold=0.05, mag_ratio=10.0,
allowlist='0123456789.-', y_ths=0.8)
logging.info(f"EasyOCR results: {results}")
recognized_text = ""
if results:
# Sort by x-coordinate for left-to-right reading
sorted_results = sorted(results, key=lambda x: x[0][0][0])
for _, text, conf in sorted_results:
logging.info(f"EasyOCR detected: {text}, Confidence: {conf}")
if conf > conf_threshold and any(c in '0123456789.-' for c in text):
recognized_text += text
else:
logging.info("EasyOCR found no digits.")
if not recognized_text:
# Tesseract fallback
tesseract_result = tesseract_ocr(thresh)
if tesseract_result:
recognized_text = tesseract_result
logging.info(f"Using Tesseract result: {recognized_text}")
logging.info(f"Raw recognized text: {recognized_text}")
if not recognized_text:
logging.info("No text detected by EasyOCR or Tesseract.")
return "Not detected", 0.0
# Minimal cleaning to preserve actual weight
text = recognized_text.lower().strip()
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5").replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8").replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4").replace("e", "3").replace("t", "7")
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
text = re.sub(r"[^\d\.\-]", "", text)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
text = text.strip('.')
if text.startswith('.'):
text = "0" + text
if text.endswith('.'):
text = text.rstrip('.')
logging.info(f"Cleaned text: {text}")
if not text or text == '.' or text == '-':
logging.warning("Cleaned text is invalid.")
return "Not detected", 0.0
try:
weight = float(text)
confidence = 80.0 if recognized_text else 50.0
if weight < -1000 or weight > 2000:
logging.warning(f"Weight {weight} outside typical range, reducing confidence.")
confidence *= 0.5
if "." in text:
int_part, dec_part = text.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0":
text = int_part
elif not dec_part and int_part == "0":
text = "0"
else:
text = f"{int_part}.{dec_part}"
else:
text = text.lstrip('0') or "0"
logging.info(f"Final detected weight: {text}, Confidence: {confidence}%")
return text, confidence
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0