Spaces:
Running
Running
File size: 8,767 Bytes
975f9c6 5234a64 d373620 753fcb8 5234a64 d373620 5234a64 753fcb8 5234a64 d373620 0f29b7c 204176c 0f29b7c d373620 204176c 753fcb8 d373620 753fcb8 204176c 753fcb8 204176c 753fcb8 d373620 753fcb8 d373620 753fcb8 d373620 975f9c6 204176c 753fcb8 204176c 753fcb8 204176c 753fcb8 204176c 753fcb8 5234a64 753fcb8 5234a64 753fcb8 4c95d04 fcdea18 975f9c6 753fcb8 975f9c6 5234a64 d373620 5234a64 753fcb8 204176c 0f29b7c 753fcb8 975f9c6 753fcb8 4c95d04 753fcb8 d373620 753fcb8 d373620 753fcb8 d373620 753fcb8 d373620 753fcb8 975f9c6 753fcb8 385a153 975f9c6 753fcb8 d373620 753fcb8 975f9c6 d373620 4ec2c37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
import pytesseract
# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR (enable GPU if available)
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.debug(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to adjust processing"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
logging.debug(f"Estimated brightness: {brightness}")
return brightness
def deblur_image(img):
"""Apply iterative sharpening to reduce blur"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Multiple sharpening passes
for _ in range(2):
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
gray = cv2.filter2D(gray, -1, kernel)
gray = np.clip(gray, 0, 255).astype(np.uint8)
save_debug_image(gray, "00_deblurred")
return gray
def preprocess_image(img):
"""Enhance image for digit detection under adverse conditions"""
# PIL enhancement
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
pil_img = ImageEnhance.Contrast(pil_img).enhance(3.0) # Extreme contrast
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.8) # Strong brightness
img_enhanced = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
save_debug_image(img_enhanced, "00_preprocessed_pil")
# Deblur
deblurred = deblur_image(img_enhanced)
# CLAHE for local contrast
clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
enhanced = clahe.apply(deblurred)
save_debug_image(enhanced, "00_clahe_enhanced")
# Noise reduction
filtered = cv2.bilateralFilter(enhanced, d=17, sigmaColor=200, sigmaSpace=200)
save_debug_image(filtered, "00_bilateral_filtered")
# Morphological cleaning
kernel = np.ones((5, 5), np.uint8)
filtered = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel, iterations=2)
save_debug_image(filtered, "00_morph_cleaned")
return filtered
def normalize_image(img):
"""Resize image to ensure digits are detectable"""
h, w = img.shape[:2]
target_height = 1080 # High resolution for small digits
aspect_ratio = w / h
target_width = int(target_height * aspect_ratio)
if target_width < 480:
target_width = 480
target_height = int(target_width / aspect_ratio)
resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
save_debug_image(resized, "00_normalized")
logging.debug(f"Normalized image to {target_width}x{target_height}")
return resized
def tesseract_ocr(img):
"""Fallback OCR using Tesseract"""
try:
config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.-'
text = pytesseract.image_to_string(img, config=config).strip()
logging.info(f"Tesseract OCR raw text: {text}")
return text
except Exception as e:
logging.error(f"Tesseract OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract the actual weight shown in the image"""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
# Normalize image
img = normalize_image(img)
brightness = estimate_brightness(img)
conf_threshold = 0.1 # Very low threshold for blurry images
# Preprocess entire image (bypass ROI detection)
processed_img = preprocess_image(img)
save_debug_image(processed_img, "01_processed_full")
# Try multiple thresholding approaches
if brightness > 100:
thresh = cv2.adaptiveThreshold(processed_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 61, 11)
save_debug_image(thresh, "02_adaptive_threshold")
else:
_, thresh = cv2.threshold(processed_img, 10, 255, cv2.THRESH_BINARY_INV)
save_debug_image(thresh, "02_simple_threshold")
# Morphological operations
kernel = np.ones((7, 7), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
save_debug_image(thresh, "02_morph_cleaned")
# EasyOCR attempt
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.05, adjust_contrast=1.5,
text_threshold=0.05, mag_ratio=10.0,
allowlist='0123456789.-', y_ths=0.8)
logging.info(f"EasyOCR results: {results}")
recognized_text = ""
if results:
# Sort by x-coordinate for left-to-right reading
sorted_results = sorted(results, key=lambda x: x[0][0][0])
for _, text, conf in sorted_results:
logging.info(f"EasyOCR detected: {text}, Confidence: {conf}")
if conf > conf_threshold and any(c in '0123456789.-' for c in text):
recognized_text += text
else:
logging.info("EasyOCR found no digits.")
if not recognized_text:
# Tesseract fallback
tesseract_result = tesseract_ocr(thresh)
if tesseract_result:
recognized_text = tesseract_result
logging.info(f"Using Tesseract result: {recognized_text}")
logging.info(f"Raw recognized text: {recognized_text}")
if not recognized_text:
logging.info("No text detected by EasyOCR or Tesseract.")
return "Not detected", 0.0
# Minimal cleaning to preserve actual weight
text = recognized_text.lower().strip()
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5").replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8").replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4").replace("e", "3").replace("t", "7")
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
text = re.sub(r"[^\d\.\-]", "", text)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
text = text.strip('.')
if text.startswith('.'):
text = "0" + text
if text.endswith('.'):
text = text.rstrip('.')
logging.info(f"Cleaned text: {text}")
if not text or text == '.' or text == '-':
logging.warning("Cleaned text is invalid.")
return "Not detected", 0.0
try:
weight = float(text)
confidence = 80.0 if recognized_text else 50.0
if weight < -1000 or weight > 2000:
logging.warning(f"Weight {weight} outside typical range, reducing confidence.")
confidence *= 0.5
if "." in text:
int_part, dec_part = text.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0":
text = int_part
elif not dec_part and int_part == "0":
text = "0"
else:
text = f"{int_part}.{dec_part}"
else:
text = text.lstrip('0') or "0"
logging.info(f"Final detected weight: {text}, Confidence: {confidence}%")
return text, confidence
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0 |