File size: 8,767 Bytes
975f9c6
 
 
 
5234a64
d373620
 
 
753fcb8
5234a64
d373620
 
5234a64
753fcb8
5234a64
 
d373620
 
 
 
 
 
 
 
 
 
 
 
 
 
0f29b7c
204176c
0f29b7c
d373620
 
 
 
204176c
753fcb8
d373620
753fcb8
 
 
 
 
 
 
204176c
 
753fcb8
 
 
 
 
 
204176c
 
753fcb8
 
 
 
 
 
d373620
 
753fcb8
 
d373620
753fcb8
 
 
 
 
d373620
975f9c6
204176c
753fcb8
204176c
753fcb8
204176c
 
753fcb8
 
204176c
 
 
 
 
 
753fcb8
 
5234a64
753fcb8
 
 
 
5234a64
753fcb8
4c95d04
fcdea18
975f9c6
753fcb8
975f9c6
 
5234a64
d373620
5234a64
753fcb8
204176c
0f29b7c
753fcb8
975f9c6
753fcb8
 
 
4c95d04
753fcb8
 
 
 
 
d373620
753fcb8
 
d373620
753fcb8
 
 
 
d373620
753fcb8
d373620
753fcb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975f9c6
753fcb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385a153
975f9c6
753fcb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d373620
753fcb8
 
 
 
 
 
975f9c6
 
d373620
4ec2c37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
import pytesseract

# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR (enable GPU if available)
easyocr_reader = easyocr.Reader(['en'], gpu=False)

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Saves an image to the debug directory with a timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if len(img.shape) == 3:  # Color image
        cv2.imwrite(filename, img)
    else:  # Grayscale image
        cv2.imwrite(filename, img)
    logging.debug(f"Saved debug image: {filename}")

def estimate_brightness(img):
    """Estimate image brightness to adjust processing"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    brightness = np.mean(gray)
    logging.debug(f"Estimated brightness: {brightness}")
    return brightness

def deblur_image(img):
    """Apply iterative sharpening to reduce blur"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Multiple sharpening passes
    for _ in range(2):
        kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
        gray = cv2.filter2D(gray, -1, kernel)
        gray = np.clip(gray, 0, 255).astype(np.uint8)
    save_debug_image(gray, "00_deblurred")
    return gray

def preprocess_image(img):
    """Enhance image for digit detection under adverse conditions"""
    # PIL enhancement
    pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    pil_img = ImageEnhance.Contrast(pil_img).enhance(3.0)  # Extreme contrast
    pil_img = ImageEnhance.Brightness(pil_img).enhance(1.8)  # Strong brightness
    img_enhanced = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
    save_debug_image(img_enhanced, "00_preprocessed_pil")

    # Deblur
    deblurred = deblur_image(img_enhanced)

    # CLAHE for local contrast
    clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8, 8))
    enhanced = clahe.apply(deblurred)
    save_debug_image(enhanced, "00_clahe_enhanced")

    # Noise reduction
    filtered = cv2.bilateralFilter(enhanced, d=17, sigmaColor=200, sigmaSpace=200)
    save_debug_image(filtered, "00_bilateral_filtered")

    # Morphological cleaning
    kernel = np.ones((5, 5), np.uint8)
    filtered = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel, iterations=2)
    save_debug_image(filtered, "00_morph_cleaned")
    return filtered

def normalize_image(img):
    """Resize image to ensure digits are detectable"""
    h, w = img.shape[:2]
    target_height = 1080  # High resolution for small digits
    aspect_ratio = w / h
    target_width = int(target_height * aspect_ratio)
    if target_width < 480:
        target_width = 480
        target_height = int(target_width / aspect_ratio)
    resized = cv2.resize(img, (target_width, target_height), interpolation=cv2.INTER_CUBIC)
    save_debug_image(resized, "00_normalized")
    logging.debug(f"Normalized image to {target_width}x{target_height}")
    return resized

def tesseract_ocr(img):
    """Fallback OCR using Tesseract"""
    try:
        config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.-'
        text = pytesseract.image_to_string(img, config=config).strip()
        logging.info(f"Tesseract OCR raw text: {text}")
        return text
    except Exception as e:
        logging.error(f"Tesseract OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    """Extract the actual weight shown in the image"""
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        save_debug_image(img, "00_input_image")

        # Normalize image
        img = normalize_image(img)
        brightness = estimate_brightness(img)
        conf_threshold = 0.1  # Very low threshold for blurry images

        # Preprocess entire image (bypass ROI detection)
        processed_img = preprocess_image(img)
        save_debug_image(processed_img, "01_processed_full")

        # Try multiple thresholding approaches
        if brightness > 100:
            thresh = cv2.adaptiveThreshold(processed_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                           cv2.THRESH_BINARY_INV, 61, 11)
            save_debug_image(thresh, "02_adaptive_threshold")
        else:
            _, thresh = cv2.threshold(processed_img, 10, 255, cv2.THRESH_BINARY_INV)
            save_debug_image(thresh, "02_simple_threshold")

        # Morphological operations
        kernel = np.ones((7, 7), np.uint8)
        thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=3)
        save_debug_image(thresh, "02_morph_cleaned")

        # EasyOCR attempt
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                         contrast_ths=0.05, adjust_contrast=1.5, 
                                         text_threshold=0.05, mag_ratio=10.0, 
                                         allowlist='0123456789.-', y_ths=0.8)
        
        logging.info(f"EasyOCR results: {results}")
        recognized_text = ""
        if results:
            # Sort by x-coordinate for left-to-right reading
            sorted_results = sorted(results, key=lambda x: x[0][0][0])
            for _, text, conf in sorted_results:
                logging.info(f"EasyOCR detected: {text}, Confidence: {conf}")
                if conf > conf_threshold and any(c in '0123456789.-' for c in text):
                    recognized_text += text
        else:
            logging.info("EasyOCR found no digits.")

        if not recognized_text:
            # Tesseract fallback
            tesseract_result = tesseract_ocr(thresh)
            if tesseract_result:
                recognized_text = tesseract_result
                logging.info(f"Using Tesseract result: {recognized_text}")

        logging.info(f"Raw recognized text: {recognized_text}")
        if not recognized_text:
            logging.info("No text detected by EasyOCR or Tesseract.")
            return "Not detected", 0.0

        # Minimal cleaning to preserve actual weight
        text = recognized_text.lower().strip()
        text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
        text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
        text = text.replace("s", "5").replace("S", "5").replace("g", "9").replace("G", "6")
        text = text.replace("l", "1").replace("I", "1").replace("|", "1")
        text = text.replace("b", "8").replace("B", "8").replace("z", "2").replace("Z", "2")
        text = text.replace("a", "4").replace("A", "4").replace("e", "3").replace("t", "7")
        text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
        text = re.sub(r"[^\d\.\-]", "", text)
        
        if text.count('.') > 1:
            parts = text.split('.')
            text = parts[0] + '.' + ''.join(parts[1:])
        text = text.strip('.')
        
        if text.startswith('.'):
            text = "0" + text
        if text.endswith('.'):
            text = text.rstrip('.')

        logging.info(f"Cleaned text: {text}")
        if not text or text == '.' or text == '-':
            logging.warning("Cleaned text is invalid.")
            return "Not detected", 0.0

        try:
            weight = float(text)
            confidence = 80.0 if recognized_text else 50.0
            if weight < -1000 or weight > 2000:
                logging.warning(f"Weight {weight} outside typical range, reducing confidence.")
                confidence *= 0.5
            if "." in text:
                int_part, dec_part = text.split(".")
                int_part = int_part.lstrip("0") or "0"
                dec_part = dec_part.rstrip('0')
                if not dec_part and int_part != "0":
                    text = int_part
                elif not dec_part and int_part == "0":
                    text = "0"
                else:
                    text = f"{int_part}.{dec_part}"
            else:
                text = text.lstrip('0') or "0"
            logging.info(f"Final detected weight: {text}, Confidence: {confidence}%")
            return text, confidence
        except ValueError:
            logging.warning(f"Could not convert '{text}' to float.")
            return "Not detected", 0.0

    except Exception as e:
        logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
        return "Not detected", 0.0