AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
781a117 verified
raw
history blame
17.8 kB
import easyocr
import numpy as np
import cv2
import re
import logging
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Adaptive thresholding based on brightness
# For darker images, a lower threshold might be needed.
# For very bright images, a higher threshold.
thresh_value = 230 if brightness > 180 else (190 if brightness > 100 else 150)
_, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
# Increased kernel size for dilation to better connect segments of digits
kernel = np.ones((11, 11), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=4) # Increased iterations
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Filter contours by a more robust area range
valid_contours = [c for c in contours if 1000 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.8)] # Added max area limit
if valid_contours:
# Sort by area descending and iterate
for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = w / h
# Tighter aspect ratio and size constraints for typical digital displays
if 1.8 <= aspect_ratio <= 5.0 and w > 80 and h > 40: # Adjusted min w and h
# Expand ROI to ensure full digits are captured
padding = 30 # Increased padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
return img[y:y+h, x:x+w], (x, y, w, h)
logging.info("No suitable ROI found, returning original image.")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 15 or w < 10: # Increased minimum dimensions for a digit
return None
# Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
# Adjusted segment proportions for better robustness
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.2)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.4), int(h*0.6)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.8), h),
'left_top': (0, int(w*0.2), int(h*0.05), int(h*0.5)),
'left_bottom': (0, int(w*0.2), int(h*0.5), int(h*0.95)),
'right_top': (int(w*0.8), w, int(h*0.05), int(h*0.5)),
'right_bottom': (int(w*0.8), w, int(h*0.5), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
# Ensure coordinates are within bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
# Count white pixels in the region
pixel_count = np.sum(region == 255)
total_pixels = region.size
# Segment is present if a significant portion of the region is white
# Adjusted threshold for segment presence
segment_presence[name] = pixel_count / total_pixels > 0.4 # Increased sensitivity
# Seven-segment digit patterns - remain the same
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1 # Initialize with a lower value
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
# Penalize for segments that should NOT be present but are
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
# Prioritize digits with more matched segments and fewer incorrect segments
current_score = matches - non_matches_penalty
# Add a small bonus for matching exactly all required segments for the digit
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
# Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Adaptive thresholding for digits within ROI
# Using OTSU for automatic thresholding or a fixed value depending on brightness
brightness = estimate_brightness(img)
if brightness > 150:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
_, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY) # Adjust threshold for darker displays
# Use EasyOCR to get bounding boxes for digits
# Increased text_threshold for more confident digit detection
# Adjusted mag_ratio for better handling of digit sizes
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
text_threshold=0.85, mag_ratio=1.2, # Reduced mag_ratio for potentially closer digits
allowlist='0123456789.')
if not results:
logging.info("EasyOCR found no digits for custom seven-segment OCR.")
return None
# Sort bounding boxes left to right
digits_info = []
for (bbox, text, conf) in results:
# Ensure the text found by EasyOCR is a single digit or a decimal point
if len(text) == 1 and (text.isdigit() or text == '.'):
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
# Sort by x_min (left to right)
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf in digits_info:
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
# If EasyOCR is very confident about a digit or it's a decimal, use its result directly
if easyocr_conf > 0.95 or easyocr_char == '.':
recognized_text += easyocr_char
else:
# Otherwise, try the segment detection
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
# If segment detection also fails, fall back to EasyOCR's less confident result
recognized_text += easyocr_char
# Validate the recognized text
text = recognized_text
text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
# Ensure there's at most one decimal point
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
# Basic validation for common weight formats
if re.fullmatch(r"^\d+(\.\d+)?$", text) and len(text) > 0: # Ensures it starts with digit and has optional decimal
return text
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
brightness = estimate_brightness(img)
# Adjust confidence threshold more dynamically
conf_threshold = 0.9 if brightness > 150 else (0.75 if brightness > 80 else 0.6)
# Detect ROI
roi_img, roi_bbox = detect_roi(img)
# Convert ROI to RGB for display purposes if needed later
# roi_img_rgb = cv2.cvtColor(roi_img, cv2.COLOR_BGR2RGB) # For debugging or display
# Try custom seven-segment OCR first
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
# Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
if "." in custom_result:
int_part, dec_part = custom_result.split(".")
int_part = int_part.lstrip("0") or "0"
custom_result = f"{int_part}.{dec_part.rstrip('0')}"
else:
custom_result = custom_result.lstrip('0') or "0"
# Additional validation for custom result
if custom_result == "0." or custom_result == ".": # Handle cases like "0." or just "."
return "Not detected", 0.0
logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
return custom_result, 100.0 # High confidence for custom OCR
# Fallback to EasyOCR if custom OCR fails
logging.info("Custom OCR failed, falling back to general EasyOCR.")
# Apply more aggressive image processing for EasyOCR if custom OCR failed
# This could involve different thresholds or contrast adjustments
processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
# Sharpening
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
# Apply adaptive thresholding to the sharpened image for better digit isolation
processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
# EasyOCR parameters for general text
# Adjusted parameters for better digit recognition
# added batch_size for potentially better performance on multiple texts
results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
contrast_ths=0.3, adjust_contrast=0.9,
text_threshold=0.7, mag_ratio=1.8, # Increased mag_ratio for potentially larger digits
allowlist='0123456789.', batch_size=4) # Added batch_size
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
text = text.lower().strip()
# More robust character replacements
text = text.replace(",", ".").replace(";", ".").replace(":", ".")
text = text.replace("o", "0").replace("O", "0").replace("q", "0") # 'q' can look like 0
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6") # Be careful with G to 6 conversion
text = text.replace("l", "1").replace("I", "1").replace("|", "1") # Added | to 1
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4") # 'a' can look like 4
text = text.replace("e", "3") # 'e' can look like 3
# Remove common weight units and other non-numeric characters
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds)\b", "", text) # Use word boundary \b
text = re.sub(r"[^\d\.]", "", text)
# Handle multiple decimal points (keep only the first one)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
# Validate the final text format
if re.fullmatch(r"^\d{1,4}(\.\d{0,3})?$", text): # Adjusted regex for more flexible digits
try:
weight = float(text)
# Refined scoring for weights within a reasonable range
range_score = 1.0
if 0.01 <= weight <= 300: # Typical personal scale range
range_score = 1.2
elif weight > 300 and weight <= 1000: # Larger scales
range_score = 1.1
else: # Very small or very large weights
range_score = 0.8
digit_count = len(text.replace('.', ''))
digit_score = 1.0
if digit_count >= 3 and digit_count <= 5: # Prefer weights with 3-5 digits (e.g., 50.5, 123.4)
digit_score = 1.3
score = conf * range_score * digit_score
# Also consider area of the bounding box relative to ROI for confidence
bbox_area = (bbox[1][0] - bbox[0][0]) * (bbox[2][1] - bbox[1][1])
if roi_bbox:
roi_area = roi_bbox[2] * roi_bbox[3]
if roi_area > 0 and bbox_area / roi_area < 0.05: # Small bounding boxes might be noise
score *= 0.5
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: {text}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
# Final formatting of the best detected weight
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
best_weight = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0