File size: 17,756 Bytes
975f9c6
 
 
 
5234a64
 
 
 
 
0bb13f0
781a117
 
5234a64
 
0f29b7c
 
 
 
975f9c6
2b694be
 
5234a64
 
0f29b7c
781a117
 
 
 
 
0f29b7c
781a117
 
 
 
 
2b694be
781a117
2b694be
781a117
 
 
2b694be
781a117
7c31f9a
 
 
781a117
 
 
 
 
 
 
4c95d04
781a117
 
4c95d04
2b694be
 
4c95d04
 
 
 
 
781a117
4c95d04
 
 
781a117
4c95d04
781a117
 
 
 
 
 
 
4c95d04
 
 
 
781a117
 
 
 
4c95d04
 
781a117
 
 
4c95d04
 
 
781a117
 
 
 
4c95d04
781a117
4c95d04
 
 
 
 
 
 
 
 
 
 
 
 
 
781a117
 
4c95d04
 
781a117
 
 
 
 
 
 
 
 
 
 
 
 
4c95d04
781a117
 
 
 
 
 
 
4c95d04
 
 
781a117
4c95d04
 
2b694be
 
781a117
 
 
 
 
 
 
 
 
4c95d04
781a117
 
4c95d04
781a117
 
4c95d04
 
 
781a117
4c95d04
 
 
781a117
 
 
 
 
 
 
 
4c95d04
781a117
 
4c95d04
 
781a117
 
 
 
4c95d04
 
781a117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c95d04
 
781a117
 
 
 
 
 
 
 
4c95d04
 
5234a64
4c95d04
 
fcdea18
975f9c6
 
 
5234a64
 
0f29b7c
781a117
 
975f9c6
2b694be
4c95d04
781a117
 
 
4c95d04
 
 
 
781a117
4c95d04
 
 
 
 
 
781a117
 
 
 
 
 
4c95d04
 
 
781a117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975f9c6
781a117
 
 
 
 
 
 
 
8ccdb60
 
2b694be
 
781a117
 
2b694be
781a117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975f9c6
8ccdb60
781a117
385a153
975f9c6
781a117
975f9c6
 
781a117
 
 
 
 
 
 
 
975f9c6
781a117
975f9c6
781a117
385a153
975f9c6
 
5234a64
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import easyocr
import numpy as np
import cv2
import re
import logging

# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)

def estimate_brightness(img):
    """Estimate image brightness to detect illuminated displays"""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def detect_roi(img):
    """Detect and crop the region of interest (likely the digital display)"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        brightness = estimate_brightness(img)

        # Adaptive thresholding based on brightness
        # For darker images, a lower threshold might be needed.
        # For very bright images, a higher threshold.
        thresh_value = 230 if brightness > 180 else (190 if brightness > 100 else 150)
        _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
        
        # Increased kernel size for dilation to better connect segments of digits
        kernel = np.ones((11, 11), np.uint8) 
        dilated = cv2.dilate(thresh, kernel, iterations=4) # Increased iterations
        
        contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        if contours:
            # Filter contours by a more robust area range
            valid_contours = [c for c in contours if 1000 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.8)] # Added max area limit
            
            if valid_contours:
                # Sort by area descending and iterate
                for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
                    x, y, w, h = cv2.boundingRect(contour)
                    aspect_ratio = w / h
                    
                    # Tighter aspect ratio and size constraints for typical digital displays
                    if 1.8 <= aspect_ratio <= 5.0 and w > 80 and h > 40: # Adjusted min w and h
                        # Expand ROI to ensure full digits are captured
                        padding = 30 # Increased padding
                        x, y = max(0, x - padding), max(0, y - padding)
                        w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
                        return img[y:y+h, x:x+w], (x, y, w, h)
        
        logging.info("No suitable ROI found, returning original image.")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        return img, None

def detect_segments(digit_img):
    """Detect seven-segment patterns in a digit image"""
    h, w = digit_img.shape
    if h < 15 or w < 10: # Increased minimum dimensions for a digit
        return None

    # Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
    # Adjusted segment proportions for better robustness
    segments = {
        'top': (int(w*0.1), int(w*0.9), 0, int(h*0.2)),
        'middle': (int(w*0.1), int(w*0.9), int(h*0.4), int(h*0.6)),
        'bottom': (int(w*0.1), int(w*0.9), int(h*0.8), h),
        'left_top': (0, int(w*0.2), int(h*0.05), int(h*0.5)),
        'left_bottom': (0, int(w*0.2), int(h*0.5), int(h*0.95)),
        'right_top': (int(w*0.8), w, int(h*0.05), int(h*0.5)),
        'right_bottom': (int(w*0.8), w, int(h*0.5), int(h*0.95))
    }

    segment_presence = {}
    for name, (x1, x2, y1, y2) in segments.items():
        # Ensure coordinates are within bounds
        x1, y1 = max(0, x1), max(0, y1)
        x2, y2 = min(w, x2), min(h, y2)
        
        region = digit_img[y1:y2, x1:x2]
        if region.size == 0:
            segment_presence[name] = False
            continue
        
        # Count white pixels in the region
        pixel_count = np.sum(region == 255)
        total_pixels = region.size
        
        # Segment is present if a significant portion of the region is white
        # Adjusted threshold for segment presence
        segment_presence[name] = pixel_count / total_pixels > 0.4 # Increased sensitivity

    # Seven-segment digit patterns - remain the same
    digit_patterns = {
        '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '1': ('right_top', 'right_bottom'),
        '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
        '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
        '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
        '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
        '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
        '7': ('top', 'right_top', 'right_bottom'),
        '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
        '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
    }

    best_match = None
    max_score = -1 # Initialize with a lower value

    for digit, pattern in digit_patterns.items():
        matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
        
        # Penalize for segments that should NOT be present but are
        non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
        
        # Prioritize digits with more matched segments and fewer incorrect segments
        current_score = matches - non_matches_penalty
        
        # Add a small bonus for matching exactly all required segments for the digit
        if all(segment_presence.get(s, False) for s in pattern):
            current_score += 0.5 

        if current_score > max_score:
            max_score = current_score
            best_match = digit
        elif current_score == max_score and best_match is not None:
            # Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
            current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
            best_digit_pattern = digit_patterns[best_match]
            best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
            if current_digit_non_matches < best_digit_non_matches:
                best_match = digit

    return best_match


def custom_seven_segment_ocr(img, roi_bbox):
    """Perform custom OCR for seven-segment displays"""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        # Adaptive thresholding for digits within ROI
        # Using OTSU for automatic thresholding or a fixed value depending on brightness
        brightness = estimate_brightness(img)
        if brightness > 150:
            _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        else:
            _, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY) # Adjust threshold for darker displays
        
        # Use EasyOCR to get bounding boxes for digits
        # Increased text_threshold for more confident digit detection
        # Adjusted mag_ratio for better handling of digit sizes
        results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, 
                                        contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
                                        text_threshold=0.85, mag_ratio=1.2, # Reduced mag_ratio for potentially closer digits
                                        allowlist='0123456789.')

        if not results:
            logging.info("EasyOCR found no digits for custom seven-segment OCR.")
            return None

        # Sort bounding boxes left to right
        digits_info = []
        for (bbox, text, conf) in results:
            # Ensure the text found by EasyOCR is a single digit or a decimal point
            if len(text) == 1 and (text.isdigit() or text == '.'):
                (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
                x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
                y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
                digits_info.append((x_min, x_max, y_min, y_max, text, conf))

        # Sort by x_min (left to right)
        digits_info.sort(key=lambda x: x[0]) 

        recognized_text = ""
        for x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf in digits_info:
            x_min, y_min = max(0, x_min), max(0, y_min)
            x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
            
            if x_max <= x_min or y_max <= y_min:
                continue
            
            digit_img_crop = thresh[y_min:y_max, x_min:x_max]
            
            # If EasyOCR is very confident about a digit or it's a decimal, use its result directly
            if easyocr_conf > 0.95 or easyocr_char == '.':
                recognized_text += easyocr_char
            else:
                # Otherwise, try the segment detection
                digit_from_segments = detect_segments(digit_img_crop)
                if digit_from_segments:
                    recognized_text += digit_from_segments
                else:
                    # If segment detection also fails, fall back to EasyOCR's less confident result
                    recognized_text += easyocr_char
            
        # Validate the recognized text
        text = recognized_text
        text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
        
        # Ensure there's at most one decimal point
        if text.count('.') > 1:
            text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
        
        # Basic validation for common weight formats
        if re.fullmatch(r"^\d+(\.\d+)?$", text) and len(text) > 0: # Ensures it starts with digit and has optional decimal
            return text
        return None
    except Exception as e:
        logging.error(f"Custom seven-segment OCR failed: {str(e)}")
        return None

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        brightness = estimate_brightness(img)
        # Adjust confidence threshold more dynamically
        conf_threshold = 0.9 if brightness > 150 else (0.75 if brightness > 80 else 0.6)

        # Detect ROI
        roi_img, roi_bbox = detect_roi(img)
        
        # Convert ROI to RGB for display purposes if needed later
        # roi_img_rgb = cv2.cvtColor(roi_img, cv2.COLOR_BGR2RGB) # For debugging or display

        # Try custom seven-segment OCR first
        custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
        if custom_result:
            # Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
            if "." in custom_result:
                int_part, dec_part = custom_result.split(".")
                int_part = int_part.lstrip("0") or "0"
                custom_result = f"{int_part}.{dec_part.rstrip('0')}"
            else:
                custom_result = custom_result.lstrip('0') or "0"
            
            # Additional validation for custom result
            if custom_result == "0." or custom_result == ".": # Handle cases like "0." or just "."
                return "Not detected", 0.0

            logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
            return custom_result, 100.0  # High confidence for custom OCR

        # Fallback to EasyOCR if custom OCR fails
        logging.info("Custom OCR failed, falling back to general EasyOCR.")
        
        # Apply more aggressive image processing for EasyOCR if custom OCR failed
        # This could involve different thresholds or contrast adjustments
        processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
        
        # Sharpening
        kernel_sharpening = np.array([[-1,-1,-1], 
                                      [-1,9,-1], 
                                      [-1,-1,-1]])
        sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)

        # Apply adaptive thresholding to the sharpened image for better digit isolation
        processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                                                        cv2.THRESH_BINARY, 11, 2)

        # EasyOCR parameters for general text
        # Adjusted parameters for better digit recognition
        # added batch_size for potentially better performance on multiple texts
        results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False, 
                                        contrast_ths=0.3, adjust_contrast=0.9, 
                                        text_threshold=0.7, mag_ratio=1.8, # Increased mag_ratio for potentially larger digits
                                        allowlist='0123456789.', batch_size=4) # Added batch_size
        
        best_weight = None
        best_conf = 0.0
        best_score = 0.0

        for (bbox, text, conf) in results:
            text = text.lower().strip()
            
            # More robust character replacements
            text = text.replace(",", ".").replace(";", ".").replace(":", ".")
            text = text.replace("o", "0").replace("O", "0").replace("q", "0") # 'q' can look like 0
            text = text.replace("s", "5").replace("S", "5")
            text = text.replace("g", "9").replace("G", "6") # Be careful with G to 6 conversion
            text = text.replace("l", "1").replace("I", "1").replace("|", "1") # Added | to 1
            text = text.replace("b", "8").replace("B", "8")
            text = text.replace("z", "2").replace("Z", "2")
            text = text.replace("a", "4").replace("A", "4") # 'a' can look like 4
            text = text.replace("e", "3") # 'e' can look like 3

            # Remove common weight units and other non-numeric characters
            text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds)\b", "", text) # Use word boundary \b
            text = re.sub(r"[^\d\.]", "", text)

            # Handle multiple decimal points (keep only the first one)
            if text.count('.') > 1:
                parts = text.split('.')
                text = parts[0] + '.' + ''.join(parts[1:])
            
            # Validate the final text format
            if re.fullmatch(r"^\d{1,4}(\.\d{0,3})?$", text): # Adjusted regex for more flexible digits
                try:
                    weight = float(text)
                    # Refined scoring for weights within a reasonable range
                    range_score = 1.0
                    if 0.01 <= weight <= 300: # Typical personal scale range
                        range_score = 1.2
                    elif weight > 300 and weight <= 1000: # Larger scales
                        range_score = 1.1
                    else: # Very small or very large weights
                        range_score = 0.8
                    
                    digit_count = len(text.replace('.', ''))
                    digit_score = 1.0
                    if digit_count >= 3 and digit_count <= 5: # Prefer weights with 3-5 digits (e.g., 50.5, 123.4)
                        digit_score = 1.3
                    
                    score = conf * range_score * digit_score
                    
                    # Also consider area of the bounding box relative to ROI for confidence
                    bbox_area = (bbox[1][0] - bbox[0][0]) * (bbox[2][1] - bbox[1][1])
                    if roi_bbox:
                        roi_area = roi_bbox[2] * roi_bbox[3]
                        if roi_area > 0 and bbox_area / roi_area < 0.05: # Small bounding boxes might be noise
                            score *= 0.5 

                    if score > best_score and conf > conf_threshold:
                        best_weight = text
                        best_conf = conf
                        best_score = score
                        logging.info(f"Candidate EasyOCR weight: {text}, Conf: {conf}, Score: {score}")

                except ValueError:
                    logging.warning(f"Could not convert '{text}' to float.")
                    continue

        if not best_weight:
            logging.info("No valid weight detected after all attempts.")
            return "Not detected", 0.0

        # Final formatting of the best detected weight
        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
            dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
            if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
                best_weight = int_part
            elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
                best_weight = "0"
            else:
                best_weight = f"{int_part}.{dec_part}"
        else:
            best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"

        logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
        return best_weight, round(best_conf * 100, 2)

    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0