Spaces:
Running
Running
File size: 17,756 Bytes
975f9c6 5234a64 0bb13f0 781a117 5234a64 0f29b7c 975f9c6 2b694be 5234a64 0f29b7c 781a117 0f29b7c 781a117 2b694be 781a117 2b694be 781a117 2b694be 781a117 7c31f9a 781a117 4c95d04 781a117 4c95d04 2b694be 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 2b694be 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 5234a64 4c95d04 fcdea18 975f9c6 5234a64 0f29b7c 781a117 975f9c6 2b694be 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 4c95d04 781a117 975f9c6 781a117 8ccdb60 2b694be 781a117 2b694be 781a117 975f9c6 8ccdb60 781a117 385a153 975f9c6 781a117 975f9c6 781a117 975f9c6 781a117 975f9c6 781a117 385a153 975f9c6 5234a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import easyocr
import numpy as np
import cv2
import re
import logging
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
# Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters.
# gpu=True can speed up processing if a compatible GPU is available.
easyocr_reader = easyocr.Reader(['en'], gpu=False)
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Adaptive thresholding based on brightness
# For darker images, a lower threshold might be needed.
# For very bright images, a higher threshold.
thresh_value = 230 if brightness > 180 else (190 if brightness > 100 else 150)
_, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
# Increased kernel size for dilation to better connect segments of digits
kernel = np.ones((11, 11), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=4) # Increased iterations
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Filter contours by a more robust area range
valid_contours = [c for c in contours if 1000 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.8)] # Added max area limit
if valid_contours:
# Sort by area descending and iterate
for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True):
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = w / h
# Tighter aspect ratio and size constraints for typical digital displays
if 1.8 <= aspect_ratio <= 5.0 and w > 80 and h > 40: # Adjusted min w and h
# Expand ROI to ensure full digits are captured
padding = 30 # Increased padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
return img[y:y+h, x:x+w], (x, y, w, h)
logging.info("No suitable ROI found, returning original image.")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 15 or w < 10: # Increased minimum dimensions for a digit
return None
# Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom)
# Adjusted segment proportions for better robustness
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.2)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.4), int(h*0.6)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.8), h),
'left_top': (0, int(w*0.2), int(h*0.05), int(h*0.5)),
'left_bottom': (0, int(w*0.2), int(h*0.5), int(h*0.95)),
'right_top': (int(w*0.8), w, int(h*0.05), int(h*0.5)),
'right_bottom': (int(w*0.8), w, int(h*0.5), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
# Ensure coordinates are within bounds
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
# Count white pixels in the region
pixel_count = np.sum(region == 255)
total_pixels = region.size
# Segment is present if a significant portion of the region is white
# Adjusted threshold for segment presence
segment_presence[name] = pixel_count / total_pixels > 0.4 # Increased sensitivity
# Seven-segment digit patterns - remain the same
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1 # Initialize with a lower value
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
# Penalize for segments that should NOT be present but are
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
# Prioritize digits with more matched segments and fewer incorrect segments
current_score = matches - non_matches_penalty
# Add a small bonus for matching exactly all required segments for the digit
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
# Tie-breaking: prefer digits with fewer "extra" segments when scores are equal
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Adaptive thresholding for digits within ROI
# Using OTSU for automatic thresholding or a fixed value depending on brightness
brightness = estimate_brightness(img)
if brightness > 150:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
_, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY) # Adjust threshold for darker displays
# Use EasyOCR to get bounding boxes for digits
# Increased text_threshold for more confident digit detection
# Adjusted mag_ratio for better handling of digit sizes
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment
text_threshold=0.85, mag_ratio=1.2, # Reduced mag_ratio for potentially closer digits
allowlist='0123456789.')
if not results:
logging.info("EasyOCR found no digits for custom seven-segment OCR.")
return None
# Sort bounding boxes left to right
digits_info = []
for (bbox, text, conf) in results:
# Ensure the text found by EasyOCR is a single digit or a decimal point
if len(text) == 1 and (text.isdigit() or text == '.'):
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
# Sort by x_min (left to right)
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf in digits_info:
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
# If EasyOCR is very confident about a digit or it's a decimal, use its result directly
if easyocr_conf > 0.95 or easyocr_char == '.':
recognized_text += easyocr_char
else:
# Otherwise, try the segment detection
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
# If segment detection also fails, fall back to EasyOCR's less confident result
recognized_text += easyocr_char
# Validate the recognized text
text = recognized_text
text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters
# Ensure there's at most one decimal point
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points
# Basic validation for common weight formats
if re.fullmatch(r"^\d+(\.\d+)?$", text) and len(text) > 0: # Ensures it starts with digit and has optional decimal
return text
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
brightness = estimate_brightness(img)
# Adjust confidence threshold more dynamically
conf_threshold = 0.9 if brightness > 150 else (0.75 if brightness > 80 else 0.6)
# Detect ROI
roi_img, roi_bbox = detect_roi(img)
# Convert ROI to RGB for display purposes if needed later
# roi_img_rgb = cv2.cvtColor(roi_img, cv2.COLOR_BGR2RGB) # For debugging or display
# Try custom seven-segment OCR first
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
# Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal
if "." in custom_result:
int_part, dec_part = custom_result.split(".")
int_part = int_part.lstrip("0") or "0"
custom_result = f"{int_part}.{dec_part.rstrip('0')}"
else:
custom_result = custom_result.lstrip('0') or "0"
# Additional validation for custom result
if custom_result == "0." or custom_result == ".": # Handle cases like "0." or just "."
return "Not detected", 0.0
logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%")
return custom_result, 100.0 # High confidence for custom OCR
# Fallback to EasyOCR if custom OCR fails
logging.info("Custom OCR failed, falling back to general EasyOCR.")
# Apply more aggressive image processing for EasyOCR if custom OCR failed
# This could involve different thresholds or contrast adjustments
processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY)
# Sharpening
kernel_sharpening = np.array([[-1,-1,-1],
[-1,9,-1],
[-1,-1,-1]])
sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening)
# Apply adaptive thresholding to the sharpened image for better digit isolation
processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
# EasyOCR parameters for general text
# Adjusted parameters for better digit recognition
# added batch_size for potentially better performance on multiple texts
results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False,
contrast_ths=0.3, adjust_contrast=0.9,
text_threshold=0.7, mag_ratio=1.8, # Increased mag_ratio for potentially larger digits
allowlist='0123456789.', batch_size=4) # Added batch_size
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
text = text.lower().strip()
# More robust character replacements
text = text.replace(",", ".").replace(";", ".").replace(":", ".")
text = text.replace("o", "0").replace("O", "0").replace("q", "0") # 'q' can look like 0
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6") # Be careful with G to 6 conversion
text = text.replace("l", "1").replace("I", "1").replace("|", "1") # Added | to 1
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4") # 'a' can look like 4
text = text.replace("e", "3") # 'e' can look like 3
# Remove common weight units and other non-numeric characters
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds)\b", "", text) # Use word boundary \b
text = re.sub(r"[^\d\.]", "", text)
# Handle multiple decimal points (keep only the first one)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
# Validate the final text format
if re.fullmatch(r"^\d{1,4}(\.\d{0,3})?$", text): # Adjusted regex for more flexible digits
try:
weight = float(text)
# Refined scoring for weights within a reasonable range
range_score = 1.0
if 0.01 <= weight <= 300: # Typical personal scale range
range_score = 1.2
elif weight > 300 and weight <= 1000: # Larger scales
range_score = 1.1
else: # Very small or very large weights
range_score = 0.8
digit_count = len(text.replace('.', ''))
digit_score = 1.0
if digit_count >= 3 and digit_count <= 5: # Prefer weights with 3-5 digits (e.g., 50.5, 123.4)
digit_score = 1.3
score = conf * range_score * digit_score
# Also consider area of the bounding box relative to ROI for confidence
bbox_area = (bbox[1][0] - bbox[0][0]) * (bbox[2][1] - bbox[1][1])
if roi_bbox:
roi_area = roi_bbox[2] * roi_bbox[3]
if roi_area > 0 and bbox_area / roi_area < 0.05: # Small bounding boxes might be noise
score *= 0.5
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: {text}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
# Final formatting of the best detected weight
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x
dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal
if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot
best_weight = int_part
elif not dec_part and int_part == "0": # if it's "0." keep it as "0"
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0"
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0 |