Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from datetime import datetime | |
import pytz | |
# Load the model and processor from Hugging Face | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") | |
# Function to detect weight text from image | |
def detect_weight(image): | |
try: | |
# Preprocess image | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
# Run model | |
generated_ids = model.generate(pixel_values) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Try to extract weight-like number | |
import re | |
match = re.search(r"(\d{1,3}(\.\d{1,2})?)", generated_text) | |
weight = match.group(1) if match else "Not detected" | |
# Get IST time | |
ist = pytz.timezone('Asia/Kolkata') | |
current_time = datetime.now(ist).strftime("%Y-%m-%d %H:%M:%S") | |
return f"Weight: {weight} kg\nCaptured At: {current_time}", image | |
except Exception as e: | |
return f"Error: {str(e)}", image | |
# Gradio UI | |
interface = gr.Interface( | |
fn=detect_weight, | |
inputs=gr.Image(type="pil", label="Upload or Capture Image"), | |
outputs=[gr.Textbox(label="Weight Info"), gr.Image(label="Snapshot")], | |
title="⚖️ Auto Weight Detector (No Tesseract)", | |
description="Detects weight from digital scale image using AI-based OCR (no Tesseract)." | |
) | |
interface.launch() | |