AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
fcdea18 verified
raw
history blame
3.13 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def enhance_image(img):
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply sharpening kernel
kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
sharp = cv2.filter2D(gray, -1, kernel)
# Contrast Limited Adaptive Histogram Equalization (CLAHE)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
contrast = clahe.apply(sharp)
# Denoising
denoised = cv2.fastNlMeansDenoising(contrast, h=30)
# Adaptive threshold for very dim images
thresh = cv2.adaptiveThreshold(denoised, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
return thresh
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Resize if too large or too small
max_dim = 1000
height, width = img.shape[:2]
if max(height, width) > max_dim:
scale = max_dim / max(height, width)
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
elif max(height, width) < 400:
scale = 2.5 # Upscale very small images
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
# Enhance image for OCR
preprocessed = enhance_image(img)
results = reader.readtext(preprocessed)
best_weight = None
best_conf = 0.0
for item in results:
if len(item) != 2 or not isinstance(item[1], tuple):
continue
text, conf = item[1]
cleaned = text.lower().strip()
cleaned = cleaned.replace(",", ".")
cleaned = cleaned.replace("o", "0").replace("O", "0")
cleaned = cleaned.replace("s", "5").replace("S", "5")
cleaned = cleaned.replace("g", "9").replace("G", "6")
cleaned = cleaned.replace("kg", "").replace("kgs", "")
cleaned = re.sub(r"[^\d\.]", "", cleaned)
if re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
if conf > best_conf:
best_weight = cleaned
best_conf = conf
if not best_weight:
for item in results:
if len(item) != 2 or not isinstance(item[1], tuple):
continue
text, conf = item[1]
fallback = re.sub(r"[^\d\.]", "", text)
if fallback and fallback.replace(".", "").isdigit():
best_weight = fallback
best_conf = conf
break
if not best_weight:
return "Not detected", 0.0
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip("0") or "0"
return best_weight, round(best_conf * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0