Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +57 -43
ocr_engine.py
CHANGED
@@ -38,15 +38,39 @@ def preprocess_image(img):
|
|
38 |
denoised = cv2.bilateralFilter(gray, 11, 17, 17)
|
39 |
save_debug_image(denoised, "01_preprocess_bilateral")
|
40 |
# Enhance contrast using CLAHE
|
41 |
-
clahe = cv2.createCLAHE(clipLimit=2.
|
42 |
enhanced = clahe.apply(denoised)
|
43 |
save_debug_image(enhanced, "02_preprocess_clahe")
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def detect_roi(img):
|
47 |
"""Detect and crop the region of interest (likely the digital display)."""
|
48 |
try:
|
49 |
-
save_debug_image(img, "
|
50 |
preprocessed = preprocess_image(img)
|
51 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
52 |
|
@@ -56,13 +80,13 @@ def detect_roi(img):
|
|
56 |
cv2.THRESH_BINARY_INV, block_size, 5)
|
57 |
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
58 |
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh)
|
59 |
-
save_debug_image(combined_thresh, "
|
60 |
|
61 |
# Morphological operations to connect digits
|
62 |
kernel = np.ones((5, 5), np.uint8)
|
63 |
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
|
64 |
eroded = cv2.erode(dilated, kernel, iterations=1)
|
65 |
-
save_debug_image(eroded, "
|
66 |
|
67 |
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
68 |
|
@@ -74,49 +98,49 @@ def detect_roi(img):
|
|
74 |
x, y, w, h = cv2.boundingRect(c)
|
75 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
76 |
aspect_ratio = w / h
|
77 |
-
if (
|
78 |
-
|
79 |
valid_contours.append((c, roi_brightness))
|
80 |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
81 |
|
82 |
if valid_contours:
|
83 |
contour, _ = max(valid_contours, key=lambda x: x[1]) # Max brightness
|
84 |
x, y, w, h = cv2.boundingRect(contour)
|
85 |
-
padding =
|
86 |
x, y = max(0, x - padding), max(0, y - padding)
|
87 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
88 |
roi_img = img[y:y+h, x:x+w]
|
89 |
-
save_debug_image(roi_img, "
|
90 |
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
|
91 |
return roi_img, (x, y, w, h)
|
92 |
|
93 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
94 |
# Fallback with relaxed criteria
|
95 |
-
valid_contours = [c for c in contours if
|
96 |
-
0.
|
97 |
if valid_contours:
|
98 |
contour = max(valid_contours, key=cv2.contourArea)
|
99 |
x, y, w, h = cv2.boundingRect(contour)
|
100 |
-
padding =
|
101 |
x, y = max(0, x - padding), max(0, y - padding)
|
102 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
103 |
roi_img = img[y:y+h, x:x+w]
|
104 |
-
save_debug_image(roi_img, "
|
105 |
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})")
|
106 |
return roi_img, (x, y, w, h)
|
107 |
|
108 |
logging.info("No suitable ROI found, returning original image.")
|
109 |
-
save_debug_image(img, "
|
110 |
return img, None
|
111 |
except Exception as e:
|
112 |
logging.error(f"ROI detection failed: {str(e)}")
|
113 |
-
save_debug_image(img, "
|
114 |
return img, None
|
115 |
|
116 |
def detect_segments(digit_img, brightness):
|
117 |
"""Detect seven-segment patterns in a digit image."""
|
118 |
h, w = digit_img.shape
|
119 |
-
if h <
|
120 |
return None
|
121 |
|
122 |
segments = {
|
@@ -139,7 +163,7 @@ def detect_segments(digit_img, brightness):
|
|
139 |
continue
|
140 |
pixel_count = np.sum(region == 255)
|
141 |
total_pixels = region.size
|
142 |
-
segment_presence[name] = pixel_count / total_pixels > (0.
|
143 |
|
144 |
digit_patterns = {
|
145 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
@@ -159,8 +183,8 @@ def detect_segments(digit_img, brightness):
|
|
159 |
for digit, pattern in digit_patterns.items():
|
160 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
161 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
162 |
-
score = matches - 0.
|
163 |
-
if matches >= len(pattern) * 0.
|
164 |
score += 1.0
|
165 |
if score > max_score:
|
166 |
max_score = score
|
@@ -176,12 +200,12 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
176 |
brightness = estimate_brightness(img)
|
177 |
thresh_value = 100 if brightness < 100 else 0
|
178 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
179 |
-
save_debug_image(thresh, "
|
180 |
|
181 |
# Morphological operations to enhance digit segments
|
182 |
kernel = np.ones((3, 3), np.uint8)
|
183 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
184 |
-
save_debug_image(thresh, "
|
185 |
|
186 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
187 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
@@ -198,7 +222,7 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
198 |
for (bbox, text, conf) in results:
|
199 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
200 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
201 |
-
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox >
|
202 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
203 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
204 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
@@ -211,7 +235,7 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
211 |
if x_max <= x_min or y_max <= y_min:
|
212 |
continue
|
213 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
214 |
-
save_debug_image(digit_img_crop, f"
|
215 |
if easyocr_conf > 0.95 or easyocr_char == '.':
|
216 |
recognized_text += easyocr_char
|
217 |
else:
|
@@ -240,20 +264,12 @@ def extract_weight_from_image(pil_img):
|
|
240 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
241 |
save_debug_image(img, "00_input_image")
|
242 |
|
243 |
-
#
|
244 |
-
|
245 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)
|
246 |
-
if lines is not None:
|
247 |
-
angle = np.mean([np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines])
|
248 |
-
if abs(angle) > 5:
|
249 |
-
(h, w) = img.shape[:2]
|
250 |
-
center = (w // 2, h // 2)
|
251 |
-
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
252 |
-
img = cv2.warpAffine(img, M, (w, h))
|
253 |
-
save_debug_image(img, "00_rotated_image")
|
254 |
|
255 |
brightness = estimate_brightness(img)
|
256 |
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4)
|
|
|
257 |
roi_img, roi_bbox = detect_roi(img)
|
258 |
if roi_bbox:
|
259 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
@@ -263,7 +279,7 @@ def extract_weight_from_image(pil_img):
|
|
263 |
if custom_result:
|
264 |
try:
|
265 |
weight = float(custom_result)
|
266 |
-
if 0.
|
267 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
268 |
return custom_result, 95.0
|
269 |
else:
|
@@ -273,11 +289,8 @@ def extract_weight_from_image(pil_img):
|
|
273 |
|
274 |
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
|
275 |
preprocessed_roi = preprocess_image(roi_img)
|
276 |
-
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
277 |
-
sharpened_roi = cv2.filter2D(preprocessed_roi, -1, kernel_sharpening)
|
278 |
-
save_debug_image(sharpened_roi, "10_fallback_sharpened")
|
279 |
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1))
|
280 |
-
final_roi = cv2.adaptiveThreshold(
|
281 |
cv2.THRESH_BINARY_INV, block_size, 8)
|
282 |
save_debug_image(final_roi, "11_fallback_adaptive_thresh")
|
283 |
|
@@ -312,9 +325,9 @@ def extract_weight_from_image(pil_img):
|
|
312 |
weight /= 1000 # Convert grams to kilograms
|
313 |
elif unit == 'lb':
|
314 |
weight *= 0.453592 # Convert pounds to kilograms
|
315 |
-
range_score = 1.5 if 0.
|
316 |
digit_count = len(text.replace('.', ''))
|
317 |
-
digit_score = 1.3 if 2 <= digit_count <=
|
318 |
score = conf * range_score * digit_score
|
319 |
if roi_bbox:
|
320 |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
@@ -331,6 +344,7 @@ def extract_weight_from_image(pil_img):
|
|
331 |
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
332 |
except ValueError:
|
333 |
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
|
|
334 |
|
335 |
if not best_weight:
|
336 |
logging.info("No valid weight detected after all attempts.")
|
@@ -347,12 +361,12 @@ def extract_weight_from_image(pil_img):
|
|
347 |
|
348 |
try:
|
349 |
final_weight = float(best_weight)
|
350 |
-
if final_weight < 0.
|
351 |
best_conf *= 0.7
|
352 |
except ValueError:
|
353 |
pass
|
354 |
|
355 |
-
logging.info(f"Final detected weight: {best_weight}
|
356 |
return best_weight, round(best_conf * 100, 2)
|
357 |
|
358 |
except Exception as e:
|
|
|
38 |
denoised = cv2.bilateralFilter(gray, 11, 17, 17)
|
39 |
save_debug_image(denoised, "01_preprocess_bilateral")
|
40 |
# Enhance contrast using CLAHE
|
41 |
+
clahe = cv2.createCLAHE(clipLimit=2.5, tileGridSize=(8, 8))
|
42 |
enhanced = clahe.apply(denoised)
|
43 |
save_debug_image(enhanced, "02_preprocess_clahe")
|
44 |
+
# Sharpen the image
|
45 |
+
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
46 |
+
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
|
47 |
+
save_debug_image(sharpened, "03_preprocess_sharpened")
|
48 |
+
return sharpened
|
49 |
+
|
50 |
+
def correct_rotation(img):
|
51 |
+
"""Correct image rotation using Hough Transform."""
|
52 |
+
try:
|
53 |
+
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 100, 200)
|
54 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)
|
55 |
+
if lines is not None:
|
56 |
+
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
57 |
+
angle = np.median(angles) # Use median for robustness
|
58 |
+
if abs(angle) > 5:
|
59 |
+
(h, w) = img.shape[:2]
|
60 |
+
center = (w // 2, h // 2)
|
61 |
+
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
62 |
+
img = cv2.warpAffine(img, M, (w, h))
|
63 |
+
save_debug_image(img, "00_rotated_image")
|
64 |
+
logging.info(f"Applied rotation correction: {angle:.2f} degrees")
|
65 |
+
return img
|
66 |
+
except Exception as e:
|
67 |
+
logging.error(f"Rotation correction failed: {str(e)}")
|
68 |
+
return img
|
69 |
|
70 |
def detect_roi(img):
|
71 |
"""Detect and crop the region of interest (likely the digital display)."""
|
72 |
try:
|
73 |
+
save_debug_image(img, "04_original")
|
74 |
preprocessed = preprocess_image(img)
|
75 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
76 |
|
|
|
80 |
cv2.THRESH_BINARY_INV, block_size, 5)
|
81 |
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
82 |
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh)
|
83 |
+
save_debug_image(combined_thresh, "05_roi_combined_threshold")
|
84 |
|
85 |
# Morphological operations to connect digits
|
86 |
kernel = np.ones((5, 5), np.uint8)
|
87 |
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
|
88 |
eroded = cv2.erode(dilated, kernel, iterations=1)
|
89 |
+
save_debug_image(eroded, "06_roi_morphological")
|
90 |
|
91 |
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
92 |
|
|
|
98 |
x, y, w, h = cv2.boundingRect(c)
|
99 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
100 |
aspect_ratio = w / h
|
101 |
+
if (500 < area < (img_area * 0.9) and
|
102 |
+
0.8 <= aspect_ratio <= 12.0 and w > 60 and h > 30 and roi_brightness > 80):
|
103 |
valid_contours.append((c, roi_brightness))
|
104 |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
105 |
|
106 |
if valid_contours:
|
107 |
contour, _ = max(valid_contours, key=lambda x: x[1]) # Max brightness
|
108 |
x, y, w, h = cv2.boundingRect(contour)
|
109 |
+
padding = 100
|
110 |
x, y = max(0, x - padding), max(0, y - padding)
|
111 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
112 |
roi_img = img[y:y+h, x:x+w]
|
113 |
+
save_debug_image(roi_img, "07_detected_roi")
|
114 |
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
|
115 |
return roi_img, (x, y, w, h)
|
116 |
|
117 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
118 |
# Fallback with relaxed criteria
|
119 |
+
valid_contours = [c for c in contours if 300 < cv2.contourArea(c) < (img_area * 0.95) and
|
120 |
+
0.5 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 15.0]
|
121 |
if valid_contours:
|
122 |
contour = max(valid_contours, key=cv2.contourArea)
|
123 |
x, y, w, h = cv2.boundingRect(contour)
|
124 |
+
padding = 100
|
125 |
x, y = max(0, x - padding), max(0, y - padding)
|
126 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
127 |
roi_img = img[y:y+h, x:x+w]
|
128 |
+
save_debug_image(roi_img, "07_detected_roi_fallback")
|
129 |
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})")
|
130 |
return roi_img, (x, y, w, h)
|
131 |
|
132 |
logging.info("No suitable ROI found, returning original image.")
|
133 |
+
save_debug_image(img, "07_no_roi_original_fallback")
|
134 |
return img, None
|
135 |
except Exception as e:
|
136 |
logging.error(f"ROI detection failed: {str(e)}")
|
137 |
+
save_debug_image(img, "07_roi_detection_error_fallback")
|
138 |
return img, None
|
139 |
|
140 |
def detect_segments(digit_img, brightness):
|
141 |
"""Detect seven-segment patterns in a digit image."""
|
142 |
h, w = digit_img.shape
|
143 |
+
if h < 15 or w < 10:
|
144 |
return None
|
145 |
|
146 |
segments = {
|
|
|
163 |
continue
|
164 |
pixel_count = np.sum(region == 255)
|
165 |
total_pixels = region.size
|
166 |
+
segment_presence[name] = pixel_count / total_pixels > (0.25 if brightness < 100 else 0.45)
|
167 |
|
168 |
digit_patterns = {
|
169 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
|
|
183 |
for digit, pattern in digit_patterns.items():
|
184 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
185 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
186 |
+
score = matches - 0.2 * non_matches_penalty
|
187 |
+
if matches >= len(pattern) * 0.75:
|
188 |
score += 1.0
|
189 |
if score > max_score:
|
190 |
max_score = score
|
|
|
200 |
brightness = estimate_brightness(img)
|
201 |
thresh_value = 100 if brightness < 100 else 0
|
202 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
203 |
+
save_debug_image(thresh, "08_roi_thresh_for_digits")
|
204 |
|
205 |
# Morphological operations to enhance digit segments
|
206 |
kernel = np.ones((3, 3), np.uint8)
|
207 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
208 |
+
save_debug_image(thresh, "09_morph_closed")
|
209 |
|
210 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
211 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
|
|
222 |
for (bbox, text, conf) in results:
|
223 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
224 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
225 |
+
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8:
|
226 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
227 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
228 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
|
|
235 |
if x_max <= x_min or y_max <= y_min:
|
236 |
continue
|
237 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
238 |
+
save_debug_image(digit_img_crop, f"10_digit_crop_{idx}_{easyocr_char}")
|
239 |
if easyocr_conf > 0.95 or easyocr_char == '.':
|
240 |
recognized_text += easyocr_char
|
241 |
else:
|
|
|
264 |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
265 |
save_debug_image(img, "00_input_image")
|
266 |
|
267 |
+
# Apply rotation correction
|
268 |
+
img = correct_rotation(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
brightness = estimate_brightness(img)
|
271 |
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4)
|
272 |
+
|
273 |
roi_img, roi_bbox = detect_roi(img)
|
274 |
if roi_bbox:
|
275 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
|
|
279 |
if custom_result:
|
280 |
try:
|
281 |
weight = float(custom_result)
|
282 |
+
if 0.001 <= weight <= 1000:
|
283 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
284 |
return custom_result, 95.0
|
285 |
else:
|
|
|
289 |
|
290 |
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
|
291 |
preprocessed_roi = preprocess_image(roi_img)
|
|
|
|
|
|
|
292 |
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1))
|
293 |
+
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
294 |
cv2.THRESH_BINARY_INV, block_size, 8)
|
295 |
save_debug_image(final_roi, "11_fallback_adaptive_thresh")
|
296 |
|
|
|
325 |
weight /= 1000 # Convert grams to kilograms
|
326 |
elif unit == 'lb':
|
327 |
weight *= 0.453592 # Convert pounds to kilograms
|
328 |
+
range_score = 1.5 if 0.001 <= weight <= 1000 else 0.8
|
329 |
digit_count = len(text.replace('.', ''))
|
330 |
+
digit_score = 1.3 if 2 <= digit_count <= 7 else 0.9
|
331 |
score = conf * range_score * digit_score
|
332 |
if roi_bbox:
|
333 |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
|
|
344 |
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
345 |
except ValueError:
|
346 |
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
347 |
+
continue
|
348 |
|
349 |
if not best_weight:
|
350 |
logging.info("No valid weight detected after all attempts.")
|
|
|
361 |
|
362 |
try:
|
363 |
final_weight = float(best_weight)
|
364 |
+
if final_weight < 0.001 or final_weight > 1000:
|
365 |
best_conf *= 0.7
|
366 |
except ValueError:
|
367 |
pass
|
368 |
|
369 |
+
logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%")
|
370 |
return best_weight, round(best_conf * 100, 2)
|
371 |
|
372 |
except Exception as e:
|