Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +190 -141
ocr_engine.py
CHANGED
@@ -31,20 +31,23 @@ def estimate_brightness(img):
|
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
return np.mean(gray)
|
33 |
|
34 |
-
def preprocess_image(img, scale=1.0):
|
35 |
"""Preprocess image for better OCR accuracy."""
|
36 |
if scale != 1.0:
|
37 |
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
save_debug_image(img, f"01_preprocess_scaled_{scale}")
|
39 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
40 |
-
#
|
41 |
-
denoised = cv2.bilateralFilter(gray,
|
42 |
save_debug_image(denoised, "02_preprocess_bilateral")
|
43 |
-
# Enhance contrast
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
|
|
|
|
|
|
48 |
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
49 |
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
|
50 |
save_debug_image(sharpened, "04_preprocess_sharpened")
|
@@ -54,11 +57,11 @@ def correct_rotation(img):
|
|
54 |
"""Correct image rotation using Hough Transform."""
|
55 |
try:
|
56 |
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
|
57 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=
|
58 |
if lines is not None:
|
59 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
60 |
angle = np.median(angles)
|
61 |
-
if abs(angle) >
|
62 |
(h, w) = img.shape[:2]
|
63 |
center = (w // 2, h // 2)
|
64 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
@@ -76,64 +79,66 @@ def detect_roi(img):
|
|
76 |
save_debug_image(img, "05_original")
|
77 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
78 |
|
79 |
-
# Try multiple scales
|
80 |
-
scales = [1.0, 1.5, 0.
|
|
|
81 |
for scale in scales:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
# Morphological operations
|
91 |
-
kernel = np.ones((5, 5), np.uint8)
|
92 |
-
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
|
93 |
-
eroded = cv2.erode(dilated, kernel, iterations=1)
|
94 |
-
save_debug_image(eroded, f"07_roi_morphological_scale_{scale}")
|
95 |
-
|
96 |
-
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
97 |
-
|
98 |
-
if contours:
|
99 |
-
img_area = img.shape[0] * img.shape[1]
|
100 |
-
valid_contours = []
|
101 |
-
for c in contours:
|
102 |
-
area = cv2.contourArea(c)
|
103 |
-
x, y, w, h = cv2.boundingRect(c)
|
104 |
-
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w] if scale == 1.0 else cv2.resize(brightness_map, (img.shape[1], img.shape[0])))
|
105 |
-
aspect_ratio = w / h
|
106 |
-
if (200 < area < (img_area * 0.95) and
|
107 |
-
0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 60):
|
108 |
-
valid_contours.append((c, roi_brightness))
|
109 |
-
logging.debug(f"Contour: Scale={scale}, Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
125 |
# Fallback with relaxed criteria
|
126 |
-
preprocessed = preprocess_image(img)
|
127 |
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
128 |
-
cv2.THRESH_BINARY_INV, block_size,
|
129 |
save_debug_image(thresh, "06_roi_fallback_threshold")
|
130 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
131 |
-
valid_contours = [c for c in contours if
|
132 |
-
0.
|
133 |
if valid_contours:
|
134 |
contour = max(valid_contours, key=cv2.contourArea)
|
135 |
x, y, w, h = cv2.boundingRect(contour)
|
136 |
-
padding =
|
137 |
x, y = max(0, x - padding), max(0, y - padding)
|
138 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
139 |
roi_img = img[y:y+h, x:x+w]
|
@@ -152,13 +157,13 @@ def detect_roi(img):
|
|
152 |
def detect_segments(digit_img, brightness):
|
153 |
"""Detect seven-segment patterns in a digit image."""
|
154 |
h, w = digit_img.shape
|
155 |
-
if h <
|
156 |
return None
|
157 |
|
158 |
segments = {
|
159 |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
160 |
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
161 |
-
'bottom': (int(w*0.1), int
|
162 |
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
|
163 |
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
|
164 |
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
|
@@ -175,7 +180,7 @@ def detect_segments(digit_img, brightness):
|
|
175 |
continue
|
176 |
pixel_count = np.sum(region == 255)
|
177 |
total_pixels = region.size
|
178 |
-
segment_presence[name] = pixel_count / total_pixels > (0.
|
179 |
|
180 |
digit_patterns = {
|
181 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
@@ -195,8 +200,8 @@ def detect_segments(digit_img, brightness):
|
|
195 |
for digit, pattern in digit_patterns.items():
|
196 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
197 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
198 |
-
score = matches - 0.
|
199 |
-
if matches >= len(pattern) * 0.
|
200 |
score += 1.0
|
201 |
if score > max_score:
|
202 |
max_score = score
|
@@ -208,9 +213,9 @@ def detect_segments(digit_img, brightness):
|
|
208 |
def custom_seven_segment_ocr(img, roi_bbox):
|
209 |
"""Perform custom OCR for seven-segment displays."""
|
210 |
try:
|
211 |
-
preprocessed = preprocess_image(img)
|
212 |
brightness = estimate_brightness(img)
|
213 |
-
thresh_value =
|
214 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
215 |
save_debug_image(thresh, "09_roi_thresh_for_digits")
|
216 |
|
@@ -221,20 +226,20 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
221 |
|
222 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
223 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
224 |
-
contrast_ths=0.
|
225 |
-
text_threshold=0.
|
226 |
-
allowlist='0123456789.', batch_size=batch_size, y_ths=0.
|
227 |
|
228 |
-
logging.info(f"EasyOCR results: {results}")
|
229 |
if not results:
|
230 |
-
logging.info("EasyOCR found no digits.")
|
231 |
return None
|
232 |
|
233 |
digits_info = []
|
234 |
for (bbox, text, conf) in results:
|
235 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
236 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
237 |
-
if (text.isdigit() or text == '.') and h_bbox >
|
238 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
239 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
240 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
@@ -248,7 +253,7 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
248 |
continue
|
249 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
250 |
save_debug_image(digit_img_crop, f"11_digit_crop_{idx}_{easyocr_char}")
|
251 |
-
if easyocr_conf > 0.
|
252 |
recognized_text += easyocr_char
|
253 |
else:
|
254 |
digit_from_segments = detect_segments(digit_img_crop, brightness)
|
@@ -280,7 +285,7 @@ def extract_weight_from_image(pil_img):
|
|
280 |
img = correct_rotation(img)
|
281 |
|
282 |
brightness = estimate_brightness(img)
|
283 |
-
conf_threshold = 0.
|
284 |
|
285 |
roi_img, roi_bbox = detect_roi(img)
|
286 |
if roi_bbox:
|
@@ -288,10 +293,10 @@ def extract_weight_from_image(pil_img):
|
|
288 |
conf_threshold *= 1.1 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
|
289 |
|
290 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
291 |
-
if custom_result:
|
292 |
try:
|
293 |
weight = float(custom_result)
|
294 |
-
if 0.
|
295 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
296 |
return custom_result, 95.0
|
297 |
else:
|
@@ -300,78 +305,122 @@ def extract_weight_from_image(pil_img):
|
|
300 |
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.")
|
301 |
|
302 |
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
|
303 |
-
preprocessed_roi = preprocess_image(roi_img)
|
304 |
-
block_size = max(
|
305 |
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
306 |
-
cv2.THRESH_BINARY_INV, block_size,
|
307 |
save_debug_image(final_roi, "12_fallback_adaptive_thresh")
|
308 |
|
309 |
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000)))
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
319 |
-
contrast_ths=
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
best_conf = conf
|
365 |
-
best_score = score
|
366 |
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
continue
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
logging.info("No valid weight detected after all attempts.")
|
373 |
return "Not detected", 0.0
|
374 |
|
|
|
|
|
|
|
375 |
# Format the weight
|
376 |
if "." in best_weight:
|
377 |
int_part, dec_part = best_weight.split(".")
|
@@ -383,14 +432,14 @@ def extract_weight_from_image(pil_img):
|
|
383 |
|
384 |
try:
|
385 |
final_weight = float(best_weight)
|
386 |
-
if final_weight < 0.
|
387 |
-
best_conf *= 0.
|
388 |
-
elif final_weight == 0 and best_conf < 0.
|
389 |
-
best_conf *= 0.
|
390 |
except ValueError:
|
391 |
pass
|
392 |
|
393 |
-
logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}
|
394 |
return best_weight, round(best_conf * 100, 2)
|
395 |
|
396 |
except Exception as e:
|
|
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
return np.mean(gray)
|
33 |
|
34 |
+
def preprocess_image(img, scale=1.0, method='clahe'):
|
35 |
"""Preprocess image for better OCR accuracy."""
|
36 |
if scale != 1.0:
|
37 |
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
save_debug_image(img, f"01_preprocess_scaled_{scale}")
|
39 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
40 |
+
# Gentle denoising
|
41 |
+
denoised = cv2.bilateralFilter(gray, 7, 10, 10)
|
42 |
save_debug_image(denoised, "02_preprocess_bilateral")
|
43 |
+
# Enhance contrast
|
44 |
+
if method == 'clahe':
|
45 |
+
clahe = cv2.createCLAHE(clipLimit=3.5, tileGridSize=(8, 8))
|
46 |
+
enhanced = clahe.apply(denoised)
|
47 |
+
else: # Histogram equalization
|
48 |
+
enhanced = cv2.equalizeHist(denoised)
|
49 |
+
save_debug_image(enhanced, f"03_preprocess_{method}")
|
50 |
+
# Sharpen
|
51 |
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
52 |
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
|
53 |
save_debug_image(sharpened, "04_preprocess_sharpened")
|
|
|
57 |
"""Correct image rotation using Hough Transform."""
|
58 |
try:
|
59 |
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
|
60 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=40, maxLineGap=10)
|
61 |
if lines is not None:
|
62 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
63 |
angle = np.median(angles)
|
64 |
+
if abs(angle) > 2:
|
65 |
(h, w) = img.shape[:2]
|
66 |
center = (w // 2, h // 2)
|
67 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
79 |
save_debug_image(img, "05_original")
|
80 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
81 |
|
82 |
+
# Try multiple scales and methods
|
83 |
+
scales = [1.0, 1.5, 0.5]
|
84 |
+
methods = ['clahe', 'hist']
|
85 |
for scale in scales:
|
86 |
+
for method in methods:
|
87 |
+
preprocessed = preprocess_image(img, scale, method)
|
88 |
+
block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1))
|
89 |
+
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
90 |
+
cv2.THRESH_BINARY_INV, block_size, 3)
|
91 |
+
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
92 |
+
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh)
|
93 |
+
save_debug_image(combined_thresh, f"06_roi_combined_threshold_scale_{scale}_{method}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Morphological operations
|
96 |
+
kernel = np.ones((3, 3), np.uint8)
|
97 |
+
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
|
98 |
+
eroded = cv2.erode(dilated, kernel, iterations=1)
|
99 |
+
save_debug_image(eroded, f"07_roi_morphological_scale_{scale}_{method}")
|
100 |
+
|
101 |
+
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
102 |
+
|
103 |
+
if contours:
|
104 |
+
img_area = img.shape[0] * img.shape[1]
|
105 |
+
valid_contours = []
|
106 |
+
for c in contours:
|
107 |
+
area = cv2.contourArea(c)
|
108 |
+
x, y, w, h = cv2.boundingRect(c)
|
109 |
+
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w] if scale == 1.0 else cv2.resize(brightness_map, (img.shape[1], img.shape[0])))
|
110 |
+
aspect_ratio = w / h
|
111 |
+
if (100 < area < (img_area * 0.95) and
|
112 |
+
0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 50):
|
113 |
+
valid_contours.append((c, roi_brightness))
|
114 |
+
logging.debug(f"Contour: Scale={scale}, Method={method}, Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
115 |
+
|
116 |
+
if valid_contours:
|
117 |
+
contour, _ = max(valid_contours, key=lambda x: x[1])
|
118 |
+
x, y, w, h = cv2.boundingRect(contour)
|
119 |
+
if scale != 1.0:
|
120 |
+
x, y, w, h = [int(v / scale) for v in (x, y, w, h)]
|
121 |
+
padding = 150
|
122 |
+
x, y = max(0, x - padding), max(0, y - padding)
|
123 |
+
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
124 |
+
roi_img = img[y:y+h, x:x+w]
|
125 |
+
save_debug_image(roi_img, f"08_detected_roi_scale_{scale}_{method}")
|
126 |
+
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h}) at scale {scale}, method {method}")
|
127 |
+
return roi_img, (x, y, w, h)
|
128 |
|
129 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
130 |
# Fallback with relaxed criteria
|
131 |
+
preprocessed = preprocess_image(img, method='clahe')
|
132 |
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
133 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
134 |
save_debug_image(thresh, "06_roi_fallback_threshold")
|
135 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
136 |
+
valid_contours = [c for c in contours if 50 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.95) and
|
137 |
+
0.2 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 25.0]
|
138 |
if valid_contours:
|
139 |
contour = max(valid_contours, key=cv2.contourArea)
|
140 |
x, y, w, h = cv2.boundingRect(contour)
|
141 |
+
padding = 150
|
142 |
x, y = max(0, x - padding), max(0, y - padding)
|
143 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
144 |
roi_img = img[y:y+h, x:x+w]
|
|
|
157 |
def detect_segments(digit_img, brightness):
|
158 |
"""Detect seven-segment patterns in a digit image."""
|
159 |
h, w = digit_img.shape
|
160 |
+
if h < 8 or w < 6:
|
161 |
return None
|
162 |
|
163 |
segments = {
|
164 |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
165 |
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
166 |
+
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
|
167 |
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
|
168 |
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
|
169 |
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
|
|
|
180 |
continue
|
181 |
pixel_count = np.sum(region == 255)
|
182 |
total_pixels = region.size
|
183 |
+
segment_presence[name] = pixel_count / total_pixels > (0.15 if brightness < 80 else 0.35)
|
184 |
|
185 |
digit_patterns = {
|
186 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
|
|
200 |
for digit, pattern in digit_patterns.items():
|
201 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
202 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
203 |
+
score = matches - 0.15 * non_matches_penalty
|
204 |
+
if matches >= len(pattern) * 0.65:
|
205 |
score += 1.0
|
206 |
if score > max_score:
|
207 |
max_score = score
|
|
|
213 |
def custom_seven_segment_ocr(img, roi_bbox):
|
214 |
"""Perform custom OCR for seven-segment displays."""
|
215 |
try:
|
216 |
+
preprocessed = preprocess_image(img, method='clahe')
|
217 |
brightness = estimate_brightness(img)
|
218 |
+
thresh_value = 60 if brightness < 80 else 0
|
219 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
220 |
save_debug_image(thresh, "09_roi_thresh_for_digits")
|
221 |
|
|
|
226 |
|
227 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
228 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
229 |
+
contrast_ths=0.1, adjust_contrast=1.3,
|
230 |
+
text_threshold=0.3, mag_ratio=6.0,
|
231 |
+
allowlist='0123456789.', batch_size=batch_size, y_ths=0.4)
|
232 |
|
233 |
+
logging.info(f"EasyOCR results (seven-segment): {results}")
|
234 |
if not results:
|
235 |
+
logging.info("EasyOCR found no digits in seven-segment OCR.")
|
236 |
return None
|
237 |
|
238 |
digits_info = []
|
239 |
for (bbox, text, conf) in results:
|
240 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
241 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
242 |
+
if (text.isdigit() or text == '.') and h_bbox > 5:
|
243 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
244 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
245 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
|
|
253 |
continue
|
254 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
255 |
save_debug_image(digit_img_crop, f"11_digit_crop_{idx}_{easyocr_char}")
|
256 |
+
if easyocr_conf > 0.85 or easyocr_char == '.':
|
257 |
recognized_text += easyocr_char
|
258 |
else:
|
259 |
digit_from_segments = detect_segments(digit_img_crop, brightness)
|
|
|
285 |
img = correct_rotation(img)
|
286 |
|
287 |
brightness = estimate_brightness(img)
|
288 |
+
conf_threshold = 0.65 if brightness > 150 else (0.45 if brightness > 80 else 0.25)
|
289 |
|
290 |
roi_img, roi_bbox = detect_roi(img)
|
291 |
if roi_bbox:
|
|
|
293 |
conf_threshold *= 1.1 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
|
294 |
|
295 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
296 |
+
if custom_result and custom_result != '0':
|
297 |
try:
|
298 |
weight = float(custom_result)
|
299 |
+
if 0.0001 <= weight <= 5000:
|
300 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
301 |
return custom_result, 95.0
|
302 |
else:
|
|
|
305 |
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.")
|
306 |
|
307 |
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
|
308 |
+
preprocessed_roi = preprocess_image(roi_img, method='hist')
|
309 |
+
block_size = max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1))
|
310 |
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
311 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
312 |
save_debug_image(final_roi, "12_fallback_adaptive_thresh")
|
313 |
|
314 |
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000)))
|
315 |
+
ocr_passes = [
|
316 |
+
{'contrast_ths': 0.2, 'text_threshold': 0.3, 'mag_ratio': 6.0, 'y_ths': 0.4, 'label': 'first'},
|
317 |
+
{'contrast_ths': 0.1, 'text_threshold': 0.2, 'mag_ratio': 7.0, 'y_ths': 0.5, 'label': 'second'},
|
318 |
+
{'contrast_ths': 0.05, 'text_threshold': 0.1, 'mag_ratio': 8.0, 'y_ths': 0.6, 'label': 'third'}
|
319 |
+
]
|
320 |
+
candidates = []
|
321 |
+
|
322 |
+
for ocr_pass in ocr_passes:
|
323 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
324 |
+
contrast_ths=ocr_pass['contrast_ths'],
|
325 |
+
adjust_contrast=1.4,
|
326 |
+
text_threshold=ocr_pass['text_threshold'],
|
327 |
+
mag_ratio=ocr_pass['mag_ratio'],
|
328 |
+
allowlist='0123456789. kglb',
|
329 |
+
batch_size=batch_size,
|
330 |
+
y_ths=ocr_pass['y_ths'])
|
331 |
+
logging.info(f"EasyOCR results ({ocr_pass['label']} pass): {results}")
|
332 |
+
save_debug_image(final_roi, f"12_fallback_adaptive_thresh_{ocr_pass['label']}_pass")
|
333 |
+
|
334 |
+
unit = None
|
335 |
+
for (bbox, text, conf) in results:
|
336 |
+
if 'kg' in text.lower():
|
337 |
+
unit = 'kg'
|
338 |
+
continue
|
339 |
+
elif 'g' in text.lower():
|
340 |
+
unit = 'g'
|
341 |
+
continue
|
342 |
+
elif 'lb' in text.lower():
|
343 |
+
unit = 'lb'
|
344 |
+
continue
|
345 |
+
text = re.sub(r"[^\d\.]", "", text)
|
346 |
+
if text.count('.') > 1:
|
347 |
+
text = text.replace('.', '', text.count('.') - 1)
|
348 |
+
text = text.strip('.')
|
349 |
+
if re.fullmatch(r"^\d*\.?\d*$", text):
|
350 |
+
try:
|
351 |
+
weight = float(text)
|
352 |
+
if unit == 'g':
|
353 |
+
weight /= 1000
|
354 |
+
elif unit == 'lb':
|
355 |
+
weight *= 0.453592
|
356 |
+
range_score = 1.5 if 0.0001 <= weight <= 5000 else 0.6
|
357 |
+
digit_count = len(text.replace('.', ''))
|
358 |
+
digit_score = 1.4 if 1 <= digit_count <= 8 else 0.7
|
359 |
+
score = conf * range_score * digit_score
|
360 |
+
if roi_bbox:
|
361 |
+
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
362 |
+
roi_area = w_roi * h_roi
|
363 |
+
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
364 |
+
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
365 |
+
bbox_area = (x_max - x_min) * (y_max - y_min)
|
366 |
+
if roi_area > 0 and bbox_area / roi_area < 0.02:
|
367 |
+
score *= 0.4
|
368 |
+
candidates.append((text, conf, score, unit))
|
|
|
|
|
369 |
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
370 |
+
except ValueError:
|
371 |
+
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
|
372 |
+
|
373 |
+
# Fallback to full image if no candidates
|
374 |
+
if not candidates:
|
375 |
+
logging.info("No candidates from ROI, trying full image.")
|
376 |
+
preprocessed_full = preprocess_image(img, method='hist')
|
377 |
+
final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
378 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
379 |
+
save_debug_image(final_full, "12_fallback_full_image")
|
380 |
+
results = easyocr_reader.readtext(final_full, detail=1, paragraph=False,
|
381 |
+
contrast_ths=0.1, adjust_contrast=1.5,
|
382 |
+
text_threshold=0.2, mag_ratio=7.0,
|
383 |
+
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.5)
|
384 |
+
logging.info(f"EasyOCR results (full image): {results}")
|
385 |
+
|
386 |
+
unit = None
|
387 |
+
for (bbox, text, conf) in results:
|
388 |
+
if 'kg' in text.lower():
|
389 |
+
unit = 'kg'
|
390 |
continue
|
391 |
+
elif 'g' in text.lower():
|
392 |
+
unit = 'g'
|
393 |
+
continue
|
394 |
+
elif 'lb' in text.lower():
|
395 |
+
unit = 'lb'
|
396 |
+
continue
|
397 |
+
text = re.sub(r"[^\d\.]", "", text)
|
398 |
+
if text.count('.') > 1:
|
399 |
+
text = text.replace('.', '', text.count('.') - 1)
|
400 |
+
text = text.strip('.')
|
401 |
+
if re.fullmatch(r"^\d*\.?\d*$", text):
|
402 |
+
try:
|
403 |
+
weight = float(text)
|
404 |
+
if unit == 'g':
|
405 |
+
weight /= 1000
|
406 |
+
elif unit == 'lb':
|
407 |
+
weight *= 0.453592
|
408 |
+
range_score = 1.2 if 0.0001 <= weight <= 5000 else 0.5
|
409 |
+
digit_count = len(text.replace('.', ''))
|
410 |
+
digit_score = 1.2 if 1 <= digit_count <= 8 else 0.6
|
411 |
+
score = conf * range_score * digit_score * 0.8 # Penalty for full image
|
412 |
+
candidates.append((text, conf, score, unit))
|
413 |
+
logging.info(f"Candidate EasyOCR weight (full image): '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
|
414 |
+
except ValueError:
|
415 |
+
logging.warning(f"Could not convert '{text}' to float during full image fallback.")
|
416 |
+
|
417 |
+
if not candidates:
|
418 |
logging.info("No valid weight detected after all attempts.")
|
419 |
return "Not detected", 0.0
|
420 |
|
421 |
+
# Select best candidate
|
422 |
+
best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2])
|
423 |
+
|
424 |
# Format the weight
|
425 |
if "." in best_weight:
|
426 |
int_part, dec_part = best_weight.split(".")
|
|
|
432 |
|
433 |
try:
|
434 |
final_weight = float(best_weight)
|
435 |
+
if final_weight < 0.0001 or final_weight > 5000:
|
436 |
+
best_conf *= 0.5
|
437 |
+
elif final_weight == 0 and best_conf < 0.95:
|
438 |
+
best_conf *= 0.6 # Penalize zero weights
|
439 |
except ValueError:
|
440 |
pass
|
441 |
|
442 |
+
logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}")
|
443 |
return best_weight, round(best_conf * 100, 2)
|
444 |
|
445 |
except Exception as e:
|