Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +113 -89
ocr_engine.py
CHANGED
@@ -31,31 +31,34 @@ def estimate_brightness(img):
|
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
return np.mean(gray)
|
33 |
|
34 |
-
def preprocess_image(img):
|
35 |
"""Preprocess image for better OCR accuracy."""
|
|
|
|
|
|
|
36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
# Apply bilateral filter to preserve edges
|
38 |
-
denoised = cv2.bilateralFilter(gray,
|
39 |
-
save_debug_image(denoised, "
|
40 |
# Enhance contrast using CLAHE
|
41 |
-
clahe = cv2.createCLAHE(clipLimit=
|
42 |
enhanced = clahe.apply(denoised)
|
43 |
-
save_debug_image(enhanced, "
|
44 |
# Sharpen the image
|
45 |
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
46 |
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
|
47 |
-
save_debug_image(sharpened, "
|
48 |
return sharpened
|
49 |
|
50 |
def correct_rotation(img):
|
51 |
"""Correct image rotation using Hough Transform."""
|
52 |
try:
|
53 |
-
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),
|
54 |
-
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=
|
55 |
if lines is not None:
|
56 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
57 |
-
angle = np.median(angles)
|
58 |
-
if abs(angle) >
|
59 |
(h, w) = img.shape[:2]
|
60 |
center = (w // 2, h // 2)
|
61 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
@@ -70,87 +73,96 @@ def correct_rotation(img):
|
|
70 |
def detect_roi(img):
|
71 |
"""Detect and crop the region of interest (likely the digital display)."""
|
72 |
try:
|
73 |
-
save_debug_image(img, "
|
74 |
-
preprocessed = preprocess_image(img)
|
75 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
valid_contours = []
|
96 |
-
for c in contours:
|
97 |
-
area = cv2.contourArea(c)
|
98 |
-
x, y, w, h = cv2.boundingRect(c)
|
99 |
-
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
100 |
-
aspect_ratio = w / h
|
101 |
-
if (500 < area < (img_area * 0.9) and
|
102 |
-
0.8 <= aspect_ratio <= 12.0 and w > 60 and h > 30 and roi_brightness > 80):
|
103 |
-
valid_contours.append((c, roi_brightness))
|
104 |
-
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
105 |
|
106 |
-
if
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
118 |
# Fallback with relaxed criteria
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
if valid_contours:
|
122 |
contour = max(valid_contours, key=cv2.contourArea)
|
123 |
x, y, w, h = cv2.boundingRect(contour)
|
124 |
-
padding =
|
125 |
x, y = max(0, x - padding), max(0, y - padding)
|
126 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
127 |
roi_img = img[y:y+h, x:x+w]
|
128 |
-
save_debug_image(roi_img, "
|
129 |
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})")
|
130 |
return roi_img, (x, y, w, h)
|
131 |
|
132 |
logging.info("No suitable ROI found, returning original image.")
|
133 |
-
save_debug_image(img, "
|
134 |
return img, None
|
135 |
except Exception as e:
|
136 |
logging.error(f"ROI detection failed: {str(e)}")
|
137 |
-
save_debug_image(img, "
|
138 |
return img, None
|
139 |
|
140 |
def detect_segments(digit_img, brightness):
|
141 |
"""Detect seven-segment patterns in a digit image."""
|
142 |
h, w = digit_img.shape
|
143 |
-
if h <
|
144 |
return None
|
145 |
|
146 |
segments = {
|
147 |
-
'top': (int(w*0.
|
148 |
-
'middle': (int(w*0.
|
149 |
-
'bottom': (int(w*0.
|
150 |
-
'left_top': (0, int(w*0.
|
151 |
-
'left_bottom': (0, int(w*0.
|
152 |
-
'right_top': (int(w*0.
|
153 |
-
'right_bottom': (int(w*0.
|
154 |
}
|
155 |
|
156 |
segment_presence = {}
|
@@ -163,7 +175,7 @@ def detect_segments(digit_img, brightness):
|
|
163 |
continue
|
164 |
pixel_count = np.sum(region == 255)
|
165 |
total_pixels = region.size
|
166 |
-
segment_presence[name] = pixel_count / total_pixels > (0.
|
167 |
|
168 |
digit_patterns = {
|
169 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
@@ -184,7 +196,7 @@ def detect_segments(digit_img, brightness):
|
|
184 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
185 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
186 |
score = matches - 0.2 * non_matches_penalty
|
187 |
-
if matches >= len(pattern) * 0.
|
188 |
score += 1.0
|
189 |
if score > max_score:
|
190 |
max_score = score
|
@@ -198,20 +210,20 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
198 |
try:
|
199 |
preprocessed = preprocess_image(img)
|
200 |
brightness = estimate_brightness(img)
|
201 |
-
thresh_value =
|
202 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
203 |
-
save_debug_image(thresh, "
|
204 |
|
205 |
-
# Morphological operations
|
206 |
kernel = np.ones((3, 3), np.uint8)
|
207 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
208 |
-
save_debug_image(thresh, "
|
209 |
|
210 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
211 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
212 |
-
contrast_ths=0.
|
213 |
-
text_threshold=0.
|
214 |
-
allowlist='0123456789.', batch_size=batch_size, y_ths=0.
|
215 |
|
216 |
logging.info(f"EasyOCR results: {results}")
|
217 |
if not results:
|
@@ -222,7 +234,7 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
222 |
for (bbox, text, conf) in results:
|
223 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
224 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
225 |
-
if
|
226 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
227 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
228 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
@@ -235,8 +247,8 @@ def custom_seven_segment_ocr(img, roi_bbox):
|
|
235 |
if x_max <= x_min or y_max <= y_min:
|
236 |
continue
|
237 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
238 |
-
save_debug_image(digit_img_crop, f"
|
239 |
-
if easyocr_conf > 0.
|
240 |
recognized_text += easyocr_char
|
241 |
else:
|
242 |
digit_from_segments = detect_segments(digit_img_crop, brightness)
|
@@ -268,18 +280,18 @@ def extract_weight_from_image(pil_img):
|
|
268 |
img = correct_rotation(img)
|
269 |
|
270 |
brightness = estimate_brightness(img)
|
271 |
-
conf_threshold = 0.7 if brightness > 150 else (0.
|
272 |
|
273 |
roi_img, roi_bbox = detect_roi(img)
|
274 |
if roi_bbox:
|
275 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
276 |
-
conf_threshold *= 1.
|
277 |
|
278 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
279 |
if custom_result:
|
280 |
try:
|
281 |
weight = float(custom_result)
|
282 |
-
if 0.001 <= weight <=
|
283 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
284 |
return custom_result, 95.0
|
285 |
else:
|
@@ -292,14 +304,24 @@ def extract_weight_from_image(pil_img):
|
|
292 |
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1))
|
293 |
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
294 |
cv2.THRESH_BINARY_INV, block_size, 8)
|
295 |
-
save_debug_image(final_roi, "
|
296 |
|
297 |
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000)))
|
298 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
299 |
-
contrast_ths=0.
|
300 |
-
text_threshold=0.
|
301 |
-
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
best_weight = None
|
304 |
best_conf = 0.0
|
305 |
best_score = 0.0
|
@@ -325,9 +347,9 @@ def extract_weight_from_image(pil_img):
|
|
325 |
weight /= 1000 # Convert grams to kilograms
|
326 |
elif unit == 'lb':
|
327 |
weight *= 0.453592 # Convert pounds to kilograms
|
328 |
-
range_score = 1.5 if 0.001 <= weight <=
|
329 |
digit_count = len(text.replace('.', ''))
|
330 |
-
digit_score = 1.3 if
|
331 |
score = conf * range_score * digit_score
|
332 |
if roi_bbox:
|
333 |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
@@ -335,8 +357,8 @@ def extract_weight_from_image(pil_img):
|
|
335 |
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
336 |
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
337 |
bbox_area = (x_max - x_min) * (y_max - y_min)
|
338 |
-
if roi_area > 0 and bbox_area / roi_area < 0.
|
339 |
-
score *= 0.
|
340 |
if score > best_score and conf > conf_threshold:
|
341 |
best_weight = text
|
342 |
best_conf = conf
|
@@ -361,8 +383,10 @@ def extract_weight_from_image(pil_img):
|
|
361 |
|
362 |
try:
|
363 |
final_weight = float(best_weight)
|
364 |
-
if final_weight < 0.001 or final_weight >
|
365 |
-
best_conf *= 0.
|
|
|
|
|
366 |
except ValueError:
|
367 |
pass
|
368 |
|
|
|
31 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
32 |
return np.mean(gray)
|
33 |
|
34 |
+
def preprocess_image(img, scale=1.0):
|
35 |
"""Preprocess image for better OCR accuracy."""
|
36 |
+
if scale != 1.0:
|
37 |
+
img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
38 |
+
save_debug_image(img, f"01_preprocess_scaled_{scale}")
|
39 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
40 |
# Apply bilateral filter to preserve edges
|
41 |
+
denoised = cv2.bilateralFilter(gray, 9, 15, 15)
|
42 |
+
save_debug_image(denoised, "02_preprocess_bilateral")
|
43 |
# Enhance contrast using CLAHE
|
44 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
|
45 |
enhanced = clahe.apply(denoised)
|
46 |
+
save_debug_image(enhanced, "03_preprocess_clahe")
|
47 |
# Sharpen the image
|
48 |
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
49 |
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
|
50 |
+
save_debug_image(sharpened, "04_preprocess_sharpened")
|
51 |
return sharpened
|
52 |
|
53 |
def correct_rotation(img):
|
54 |
"""Correct image rotation using Hough Transform."""
|
55 |
try:
|
56 |
+
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
|
57 |
+
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=80, minLineLength=50, maxLineGap=10)
|
58 |
if lines is not None:
|
59 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
60 |
+
angle = np.median(angles)
|
61 |
+
if abs(angle) > 3:
|
62 |
(h, w) = img.shape[:2]
|
63 |
center = (w // 2, h // 2)
|
64 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
73 |
def detect_roi(img):
|
74 |
"""Detect and crop the region of interest (likely the digital display)."""
|
75 |
try:
|
76 |
+
save_debug_image(img, "05_original")
|
|
|
77 |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
|
78 |
|
79 |
+
# Try multiple scales for preprocessing
|
80 |
+
scales = [1.0, 1.5, 0.75]
|
81 |
+
for scale in scales:
|
82 |
+
preprocessed = preprocess_image(img, scale)
|
83 |
+
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
|
84 |
+
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
85 |
+
cv2.THRESH_BINARY_INV, block_size, 5)
|
86 |
+
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
87 |
+
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh)
|
88 |
+
save_debug_image(combined_thresh, f"06_roi_combined_threshold_scale_{scale}")
|
89 |
+
|
90 |
+
# Morphological operations
|
91 |
+
kernel = np.ones((5, 5), np.uint8)
|
92 |
+
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
|
93 |
+
eroded = cv2.erode(dilated, kernel, iterations=1)
|
94 |
+
save_debug_image(eroded, f"07_roi_morphological_scale_{scale}")
|
95 |
+
|
96 |
+
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
if contours:
|
99 |
+
img_area = img.shape[0] * img.shape[1]
|
100 |
+
valid_contours = []
|
101 |
+
for c in contours:
|
102 |
+
area = cv2.contourArea(c)
|
103 |
+
x, y, w, h = cv2.boundingRect(c)
|
104 |
+
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w] if scale == 1.0 else cv2.resize(brightness_map, (img.shape[1], img.shape[0])))
|
105 |
+
aspect_ratio = w / h
|
106 |
+
if (200 < area < (img_area * 0.95) and
|
107 |
+
0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 60):
|
108 |
+
valid_contours.append((c, roi_brightness))
|
109 |
+
logging.debug(f"Contour: Scale={scale}, Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
110 |
+
|
111 |
+
if valid_contours:
|
112 |
+
contour, _ = max(valid_contours, key=lambda x: x[1])
|
113 |
+
x, y, w, h = cv2.boundingRect(contour)
|
114 |
+
if scale != 1.0:
|
115 |
+
x, y, w, h = [int(v / scale) for v in (x, y, w, h)]
|
116 |
+
padding = 120
|
117 |
+
x, y = max(0, x - padding), max(0, y - padding)
|
118 |
+
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
119 |
+
roi_img = img[y:y+h, x:x+w]
|
120 |
+
save_debug_image(roi_img, f"08_detected_roi_scale_{scale}")
|
121 |
+
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h}) at scale {scale}")
|
122 |
+
return roi_img, (x, y, w, h)
|
123 |
|
124 |
logging.info("No suitable ROI found, attempting fallback criteria.")
|
125 |
# Fallback with relaxed criteria
|
126 |
+
preprocessed = preprocess_image(img)
|
127 |
+
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
128 |
+
cv2.THRESH_BINARY_INV, block_size, 8)
|
129 |
+
save_debug_image(thresh, "06_roi_fallback_threshold")
|
130 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
131 |
+
valid_contours = [c for c in contours if 100 < cv2.contourArea(c) < (img.shape[0] * img.shape[1] * 0.95) and
|
132 |
+
0.3 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 20.0]
|
133 |
if valid_contours:
|
134 |
contour = max(valid_contours, key=cv2.contourArea)
|
135 |
x, y, w, h = cv2.boundingRect(contour)
|
136 |
+
padding = 120
|
137 |
x, y = max(0, x - padding), max(0, y - padding)
|
138 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
139 |
roi_img = img[y:y+h, x:x+w]
|
140 |
+
save_debug_image(roi_img, "08_detected_roi_fallback")
|
141 |
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})")
|
142 |
return roi_img, (x, y, w, h)
|
143 |
|
144 |
logging.info("No suitable ROI found, returning original image.")
|
145 |
+
save_debug_image(img, "08_no_roi_original_fallback")
|
146 |
return img, None
|
147 |
except Exception as e:
|
148 |
logging.error(f"ROI detection failed: {str(e)}")
|
149 |
+
save_debug_image(img, "08_roi_detection_error_fallback")
|
150 |
return img, None
|
151 |
|
152 |
def detect_segments(digit_img, brightness):
|
153 |
"""Detect seven-segment patterns in a digit image."""
|
154 |
h, w = digit_img.shape
|
155 |
+
if h < 10 or w < 8:
|
156 |
return None
|
157 |
|
158 |
segments = {
|
159 |
+
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
|
160 |
+
'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
|
161 |
+
'bottom': (int(w*0.1), int看到的: int(w*0.9), int(h*0.75), h),
|
162 |
+
'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
|
163 |
+
'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
|
164 |
+
'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
|
165 |
+
'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
|
166 |
}
|
167 |
|
168 |
segment_presence = {}
|
|
|
175 |
continue
|
176 |
pixel_count = np.sum(region == 255)
|
177 |
total_pixels = region.size
|
178 |
+
segment_presence[name] = pixel_count / total_pixels > (0.2 if brightness < 80 else 0.4)
|
179 |
|
180 |
digit_patterns = {
|
181 |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
|
|
|
196 |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
|
197 |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
|
198 |
score = matches - 0.2 * non_matches_penalty
|
199 |
+
if matches >= len(pattern) * 0.7:
|
200 |
score += 1.0
|
201 |
if score > max_score:
|
202 |
max_score = score
|
|
|
210 |
try:
|
211 |
preprocessed = preprocess_image(img)
|
212 |
brightness = estimate_brightness(img)
|
213 |
+
thresh_value = 80 if brightness < 80 else 0
|
214 |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
215 |
+
save_debug_image(thresh, "09_roi_thresh_for_digits")
|
216 |
|
217 |
+
# Morphological operations
|
218 |
kernel = np.ones((3, 3), np.uint8)
|
219 |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
|
220 |
+
save_debug_image(thresh, "10_morph_closed")
|
221 |
|
222 |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
|
223 |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
224 |
+
contrast_ths=0.2, adjust_contrast=1.2,
|
225 |
+
text_threshold=0.5, mag_ratio=4.0,
|
226 |
+
allowlist='0123456789.', batch_size=batch_size, y_ths=0.3)
|
227 |
|
228 |
logging.info(f"EasyOCR results: {results}")
|
229 |
if not results:
|
|
|
234 |
for (bbox, text, conf) in results:
|
235 |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
236 |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
237 |
+
if (text.isdigit() or text == '.') and h_bbox > 6:
|
238 |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
239 |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
240 |
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
|
|
247 |
if x_max <= x_min or y_max <= y_min:
|
248 |
continue
|
249 |
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
|
250 |
+
save_debug_image(digit_img_crop, f"11_digit_crop_{idx}_{easyocr_char}")
|
251 |
+
if easyocr_conf > 0.9 or easyocr_char == '.':
|
252 |
recognized_text += easyocr_char
|
253 |
else:
|
254 |
digit_from_segments = detect_segments(digit_img_crop, brightness)
|
|
|
280 |
img = correct_rotation(img)
|
281 |
|
282 |
brightness = estimate_brightness(img)
|
283 |
+
conf_threshold = 0.7 if brightness > 150 else (0.5 if brightness > 80 else 0.3)
|
284 |
|
285 |
roi_img, roi_bbox = detect_roi(img)
|
286 |
if roi_bbox:
|
287 |
roi_area = roi_bbox[2] * roi_bbox[3]
|
288 |
+
conf_threshold *= 1.1 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
|
289 |
|
290 |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
|
291 |
if custom_result:
|
292 |
try:
|
293 |
weight = float(custom_result)
|
294 |
+
if 0.001 <= weight <= 2000:
|
295 |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
|
296 |
return custom_result, 95.0
|
297 |
else:
|
|
|
304 |
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1))
|
305 |
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
306 |
cv2.THRESH_BINARY_INV, block_size, 8)
|
307 |
+
save_debug_image(final_roi, "12_fallback_adaptive_thresh")
|
308 |
|
309 |
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000)))
|
310 |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
311 |
+
contrast_ths=0.3, adjust_contrast=1.2,
|
312 |
+
text_threshold=0.4, mag_ratio=5.0,
|
313 |
+
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.3)
|
314 |
|
315 |
+
# Secondary EasyOCR pass with different parameters
|
316 |
+
if not results:
|
317 |
+
logging.info("First EasyOCR pass failed, trying with relaxed parameters.")
|
318 |
+
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
|
319 |
+
contrast_ths=0.2, adjust_contrast=1.5,
|
320 |
+
text_threshold=0.3, mag_ratio=6.0,
|
321 |
+
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.4)
|
322 |
+
save_debug_image(final_roi, "12_fallback_adaptive_thresh_relaxed")
|
323 |
+
|
324 |
+
logging.info(f"EasyOCR results: {results}")
|
325 |
best_weight = None
|
326 |
best_conf = 0.0
|
327 |
best_score = 0.0
|
|
|
347 |
weight /= 1000 # Convert grams to kilograms
|
348 |
elif unit == 'lb':
|
349 |
weight *= 0.453592 # Convert pounds to kilograms
|
350 |
+
range_score = 1.5 if 0.001 <= weight <= 2000 else 0.7
|
351 |
digit_count = len(text.replace('.', ''))
|
352 |
+
digit_score = 1.3 if 1 <= digit_count <= 8 else 0.8
|
353 |
score = conf * range_score * digit_score
|
354 |
if roi_bbox:
|
355 |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
|
|
|
357 |
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
|
358 |
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
|
359 |
bbox_area = (x_max - x_min) * (y_max - y_min)
|
360 |
+
if roi_area > 0 and bbox_area / roi_area < 0.03:
|
361 |
+
score *= 0.5
|
362 |
if score > best_score and conf > conf_threshold:
|
363 |
best_weight = text
|
364 |
best_conf = conf
|
|
|
383 |
|
384 |
try:
|
385 |
final_weight = float(best_weight)
|
386 |
+
if final_weight < 0.001 or final_weight > 2000:
|
387 |
+
best_conf *= 0.6
|
388 |
+
elif final_weight == 0 and best_conf < 0.9:
|
389 |
+
best_conf *= 0.7 # Penalize zero weights with low confidence
|
390 |
except ValueError:
|
391 |
pass
|
392 |
|