Sanjayraju30 commited on
Commit
6ae35d6
·
verified ·
1 Parent(s): e71776d

Update ocr_engine.py

Browse files
Files changed (1) hide show
  1. ocr_engine.py +105 -239
ocr_engine.py CHANGED
@@ -21,7 +21,7 @@ def save_debug_image(img, filename_suffix, prefix=""):
21
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
22
  filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
23
  if len(img.shape) == 3:
24
- cv2.imwrite(filename, img)
25
  else:
26
  cv2.imwrite(filename, img)
27
  logging.info(f"Saved debug image: {filename}")
@@ -32,24 +32,32 @@ def estimate_brightness(img):
32
  return np.mean(gray)
33
 
34
  def preprocess_image(img):
35
- """Preprocess image for OCR."""
36
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
37
- denoised = cv2.bilateralFilter(gray, 5, 8, 8)
38
- save_debug_image(denoised, "01_preprocess_bilateral")
39
- clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
40
- enhanced = clahe.apply(denoised)
 
 
41
  save_debug_image(enhanced, "02_preprocess_clahe")
42
- return enhanced
 
 
 
 
43
 
44
  def correct_rotation(img):
45
- """Correct image rotation."""
46
  try:
47
- edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 50, 150)
 
 
48
  lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
49
  if lines is not None:
50
  angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
51
  angle = np.median(angles)
52
- if abs(angle) > 2:
53
  h, w = img.shape[:2]
54
  center = (w // 2, h // 2)
55
  M = cv2.getRotationMatrix2D(center, angle, 1.0)
@@ -62,15 +70,20 @@ def correct_rotation(img):
62
  return img
63
 
64
  def detect_roi(img):
65
- """Detect region of interest (display)."""
66
  try:
67
- save_debug_image(img, "03_original")
68
  preprocessed = preprocess_image(img)
69
  brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
70
- block_size = max(9, min(31, int(img.shape[0] / 25) * 2 + 1))
 
71
  thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
72
  cv2.THRESH_BINARY_INV, block_size, 2)
73
- save_debug_image(thresh, "04_roi_threshold")
 
 
 
 
74
  contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
75
 
76
  if contours:
@@ -81,141 +94,105 @@ def detect_roi(img):
81
  x, y, w, h = cv2.boundingRect(c)
82
  roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
83
  aspect_ratio = w / h
84
- if (50 < area < (img_area * 0.95) and
85
- 0.2 <= aspect_ratio <= 30.0 and w > 30 and h > 10 and roi_brightness > 30):
86
- valid_contours.append((c, roi_brightness))
 
87
  logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
88
 
89
  if valid_contours:
90
  contour, _ = max(valid_contours, key=lambda x: x[1])
91
  x, y, w, h = cv2.boundingRect(contour)
92
- padding = 200
 
93
  x, y = max(0, x - padding), max(0, y - padding)
94
  w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
95
  roi_img = img[y:y+h, x:x+w]
96
- save_debug_image(roi_img, "05_detected_roi")
97
  logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
98
  return roi_img, (x, y, w, h)
99
 
100
  logging.info("No ROI found, using full image.")
101
- save_debug_image(img, "05_no_roi_fallback")
102
  return img, None
103
  except Exception as e:
104
  logging.error(f"ROI detection failed: {str(e)}")
105
- save_debug_image(img, "05_roi_error_fallback")
106
  return img, None
107
 
108
- def detect_segments(digit_img, brightness):
109
- """Detect seven-segment digits."""
110
- h, w = digit_img.shape
111
- if h < 5 or w < 3:
112
- return None
113
-
114
- segments = {
115
- 'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
116
- 'middle': (int(w*0.1), int(w*0.9), int(h*0.45), int(h*0.55)),
117
- 'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
118
- 'left_top': (0, int(w*0.3), int(h*0.1), int(h*0.5)),
119
- 'left_bottom': (0, int(w*0.3), int(h*0.5), int(h*0.9)),
120
- 'right_top': (int(w*0.7), w, int(h*0.1), int(h*0.5)),
121
- 'right_bottom': (int(w*0.7), w, int(h*0.5), int(h*0.9))
122
- }
123
-
124
- segment_presence = {}
125
- for name, (x1, x2, y1, y2) in segments.items():
126
- x1, y1 = max(0, x1), max(0, y1)
127
- x2, y2 = min(w, x2), min(h, y2)
128
- region = digit_img[y1:y2, x1:x2]
129
- if region.size == 0:
130
- segment_presence[name] = False
131
- continue
132
- pixel_count = np.sum(region == 255)
133
- total_pixels = region.size
134
- segment_presence[name] = pixel_count / total_pixels > (0.1 if brightness < 80 else 0.25)
135
-
136
- digit_patterns = {
137
- '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
138
- '1': ('right_top', 'right_bottom'),
139
- '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
140
- '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
141
- '4': ('middle', 'left_top', 'right_top', 'right_bottom'),
142
- '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
143
- '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
144
- '7': ('top', 'right_top', 'right_bottom'),
145
- '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
146
- '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
147
- }
148
-
149
- best_match = None
150
- max_score = -1
151
- for digit, pattern in digit_patterns.items():
152
- matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
153
- non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
154
- score = matches - 0.1 * non_matches_penalty
155
- if matches >= len(pattern) * 0.55:
156
- score += 1.0
157
- if score > max_score:
158
- max_score = score
159
- best_match = digit
160
-
161
- logging.debug(f"Segment presence: {segment_presence}, Digit: {best_match}")
162
- return best_match
163
-
164
- def custom_seven_segment_ocr(img, roi_bbox):
165
- """Perform OCR for seven-segment displays."""
166
  try:
167
  preprocessed = preprocess_image(img)
168
  brightness = estimate_brightness(img)
169
- _, thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
170
- save_debug_image(thresh, "06_roi_thresh_digits")
 
 
 
 
 
 
 
 
171
  results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
172
- contrast_ths=0.05, adjust_contrast=1.2,
173
- text_threshold=0.15, mag_ratio=4.0,
174
- allowlist='0123456789.', batch_size=2, y_ths=0.3)
175
 
176
  logging.info(f"EasyOCR results: {results}")
 
 
 
 
 
 
 
 
177
  if not results:
178
  logging.info("No digits found.")
179
- return None
180
 
181
  digits_info = []
182
  for (bbox, text, conf) in results:
183
  (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
184
  h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
185
- if (text.isdigit() or text == '.') and h_bbox > 4:
186
  x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
187
  y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
188
  digits_info.append((x_min, x_max, y_min, y_max, text, conf))
189
 
 
 
 
 
190
  digits_info.sort(key=lambda x: x[0])
191
  recognized_text = ""
192
- for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
193
- x_min, y_min = max(0, x_min), max(0, y_min)
194
- x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
195
- if x_max <= x_min or y_max <= y_min:
196
- continue
197
- digit_img_crop = thresh[y_min:y_max, x_min:x_max]
198
- save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
199
- if easyocr_conf > 0.8 or easyocr_char == '.':
200
- recognized_text += easyocr_char
201
- else:
202
- digit_from_segments = detect_segments(digit_img_crop, brightness)
203
- recognized_text += digit_from_segments if digit_from_segments else easyocr_char
204
 
205
- logging.info(f"Recognized text: {recognized_text}")
 
 
 
206
  text = re.sub(r"[^\d\.]", "", recognized_text)
207
  if text.count('.') > 1:
208
  text = text.replace('.', '', text.count('.') - 1)
 
209
  if text and re.fullmatch(r"^\d*\.?\d*$", text):
210
- text = text.strip('.')
211
- if text == '':
212
- return None
213
- return text.lstrip('0') or '0'
214
  logging.info(f"Text '{recognized_text}' failed validation.")
215
- return None
216
  except Exception as e:
217
- logging.error(f"Seven-segment OCR failed: {str(e)}")
218
- return None
219
 
220
  def extract_weight_from_image(pil_img):
221
  """Extract weight from a digital scale image."""
@@ -225,148 +202,37 @@ def extract_weight_from_image(pil_img):
225
  save_debug_image(img, "00_input_image")
226
  img = correct_rotation(img)
227
  brightness = estimate_brightness(img)
228
- conf_threshold = 0.6 if brightness > 150 else (0.4 if brightness > 80 else 0.2)
229
 
230
  roi_img, roi_bbox = detect_roi(img)
231
  if roi_bbox:
232
- conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.5) else 1.0
233
 
234
- custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
235
- if custom_result and custom_result != '0':
236
  try:
237
- weight = float(custom_result)
238
  if 0.00001 <= weight <= 10000:
239
- logging.info(f"Custom OCR: {custom_result}, Confidence: 90.0%")
240
- return custom_result, 90.0
241
- logging.warning(f"Custom OCR {custom_result} out of range.")
242
  except ValueError:
243
- logging.warning(f"Custom OCR '{custom_result}' invalid number.")
244
-
245
- logging.info("Custom OCR failed, using EasyOCR fallback.")
246
- preprocessed_roi = preprocess_image(roi_img)
247
- final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
248
- cv2.THRESH_BINARY_INV, max(9, min(31, int(roi_img.shape[0] / 25) * 2 + 1)), 2)
249
- save_debug_image(final_roi, "08_fallback_thresh")
250
 
251
- results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
252
- contrast_ths=0.05, adjust_contrast=1.2,
253
- text_threshold=0.15, mag_ratio=4.0,
254
- allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
255
-
256
- if not results:
257
- logging.info("First EasyOCR pass failed, trying fallback.")
258
- results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
259
- contrast_ths=0.02, adjust_contrast=1.5,
260
- text_threshold=0.1, mag_ratio=5.0,
261
- allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
262
- save_debug_image(final_roi, "08_fallback_thresh_fallback")
263
-
264
- logging.info(f"EasyOCR results: {results}")
265
- candidates = []
266
- unit = None
267
- for (bbox, text, conf) in results:
268
- if 'kg' in text.lower():
269
- unit = 'kg'
270
- continue
271
- elif 'g' in text.lower():
272
- unit = 'g'
273
- continue
274
- elif 'lb' in text.lower():
275
- unit = 'lb'
276
- continue
277
- text = re.sub(r"[^\d\.]", "", text)
278
- if text.count('.') > 1:
279
- text = text.replace('.', '', text.count('.') - 1)
280
- text = text.strip('.')
281
- if re.fullmatch(r"^\d*\.?\d*$", text):
282
- try:
283
- weight = float(text)
284
- if unit == 'g':
285
- weight /= 1000
286
- elif unit == 'lb':
287
- weight *= 0.453592
288
- range_score = 1.5 if 0.00001 <= weight <= 10000 else 0.5
289
- digit_count = len(text.replace('.', ''))
290
- digit_score = 1.4 if 1 <= digit_count <= 8 else 0.6
291
- score = conf * range_score * digit_score
292
- if roi_bbox:
293
- x_roi, y_roi, w_roi, h_roi = roi_bbox
294
- roi_area = w_roi * h_roi
295
- x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
296
- x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
297
- bbox_area = (x_max - x_min) * (y_max - y_min)
298
- if roi_area > 0 and bbox_area / roi_area < 0.02:
299
- score *= 0.4
300
- candidates.append((text, conf, score, unit))
301
- logging.info(f"Candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
302
- except ValueError:
303
- logging.warning(f"Could not convert '{text}' to float.")
304
-
305
- if not candidates and not roi_bbox:
306
- logging.info("No candidates, trying full image.")
307
- preprocessed_full = preprocess_image(img)
308
- final_full = cv2.adaptiveThreshold(preprocessed_full, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
309
- cv2.THRESH_BINARY_INV, max(9, min(31, int(img.shape[0] / 25) * 2 + 1)), 2)
310
- save_debug_image(final_full, "08_fallback_full")
311
- results = easyocr_reader.readtext(final_full, detail=1, paragraph=False,
312
- contrast_ths=0.05, adjust_contrast=1.5,
313
- text_threshold=0.15, mag_ratio=4.0,
314
- allowlist='0123456789. kglb', batch_size=2, y_ths=0.3)
315
- logging.info(f"Full image EasyOCR: {results}")
316
- for (bbox, text, conf) in results:
317
- if 'kg' in text.lower():
318
- unit = 'kg'
319
- continue
320
- elif 'g' in text.lower():
321
- unit = 'g'
322
- continue
323
- elif 'lb' in text.lower():
324
- unit = 'lb'
325
- continue
326
- text = re.sub(r"[^\d\.]", "", text)
327
- if text.count('.') > 1:
328
- text = text.replace('.', '', text.count('.') - 1)
329
- text = text.strip('.')
330
- if re.fullmatch(r"^\d*\.?\d*$", text):
331
- try:
332
- weight = float(text)
333
- if unit == 'g':
334
- weight /= 1000
335
- elif unit == 'lb':
336
- weight *= 0.453592
337
- range_score = 1.2 if 0.00001 <= weight <= 10000 else 0.4
338
- digit_count = len(text.replace('.', ''))
339
- digit_score = 1.2 if 1 <= digit_count <= 8 else 0.5
340
- score = conf * range_score * digit_score * 0.7
341
- candidates.append((text, conf, score, unit))
342
- logging.info(f"Full image candidate: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
343
- except ValueError:
344
- logging.warning(f"Could not convert '{text}' to float (full image).")
345
-
346
- if not candidates:
347
- logging.info("No valid weight detected.")
348
- return "Not detected", 0.0
349
-
350
- best_weight, best_conf, best_score, best_unit = max(candidates, key=lambda x: x[2])
351
- if "." in best_weight:
352
- int_part, dec_part = best_weight.split(".")
353
- int_part = int_part.lstrip("0") or "0"
354
- dec_part = dec_part.rstrip('0')
355
- best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
356
- else:
357
- best_weight = best_weight.lstrip('0') or "0"
358
-
359
- try:
360
- final_weight = float(best_weight)
361
- if final_weight < 0.00001 or final_weight > 10000:
362
- best_conf *= 0.4
363
- elif final_weight == 0 and best_conf < 0.95:
364
- best_conf *= 0.5
365
- except ValueError:
366
- pass
367
 
368
- logging.info(f"Final weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%, Unit: {best_unit or 'none'}")
369
- return best_weight, round(best_conf * 100, 2)
370
  except Exception as e:
371
  logging.error(f"Weight extraction failed: {str(e)}")
372
  return "Not detected", 0.0
 
21
  timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
22
  filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
23
  if len(img.shape) == 3:
24
+ cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
25
  else:
26
  cv2.imwrite(filename, img)
27
  logging.info(f"Saved debug image: {filename}")
 
32
  return np.mean(gray)
33
 
34
  def preprocess_image(img):
35
+ """Preprocess image for OCR with enhanced contrast and noise reduction."""
36
  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
37
+ # Apply Gaussian blur to reduce noise
38
+ blurred = cv2.GaussianBlur(gray, (5, 5), 0)
39
+ save_debug_image(blurred, "01_preprocess_blur")
40
+ # Use adaptive histogram equalization for better contrast
41
+ clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
42
+ enhanced = clahe.apply(blurred)
43
  save_debug_image(enhanced, "02_preprocess_clahe")
44
+ # Morphological operations to enhance digits
45
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
46
+ morphed = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel)
47
+ save_debug_image(morphed, "03_preprocess_morph")
48
+ return morphed
49
 
50
  def correct_rotation(img):
51
+ """Correct image rotation using edge detection."""
52
  try:
53
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
54
+ blurred = cv2.GaussianBlur(gray, (5, 5), 0)
55
+ edges = cv2.Canny(blurred, 50, 150)
56
  lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
57
  if lines is not None:
58
  angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
59
  angle = np.median(angles)
60
+ if abs(angle) > 1.5:
61
  h, w = img.shape[:2]
62
  center = (w // 2, h // 2)
63
  M = cv2.getRotationMatrix2D(center, angle, 1.0)
 
70
  return img
71
 
72
  def detect_roi(img):
73
+ """Detect region of interest (display) with refined contour filtering."""
74
  try:
75
+ save_debug_image(img, "04_original")
76
  preprocessed = preprocess_image(img)
77
  brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
78
+ # Dynamic block size based on image dimensions
79
+ block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
80
  thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
81
  cv2.THRESH_BINARY_INV, block_size, 2)
82
+ save_debug_image(thresh, "05_roi_threshold")
83
+ # Morphological operations to connect digit segments
84
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
85
+ thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
86
+ save_debug_image(thresh, "06_roi_morph")
87
  contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
88
 
89
  if contours:
 
94
  x, y, w, h = cv2.boundingRect(c)
95
  roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
96
  aspect_ratio = w / h
97
+ # Relaxed constraints for ROI detection
98
+ if (100 < area < (img_area * 0.9) and
99
+ 0.3 <= aspect_ratio <= 20.0 and w > 40 and h > 15 and roi_brightness > 20):
100
+ valid_contours.append((c, area * roi_brightness))
101
  logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
102
 
103
  if valid_contours:
104
  contour, _ = max(valid_contours, key=lambda x: x[1])
105
  x, y, w, h = cv2.boundingRect(contour)
106
+ # Dynamic padding based on ROI size
107
+ padding = max(10, min(50, int(min(w, h) * 0.2)))
108
  x, y = max(0, x - padding), max(0, y - padding)
109
  w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
110
  roi_img = img[y:y+h, x:x+w]
111
+ save_debug_image(roi_img, "07_detected_roi")
112
  logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
113
  return roi_img, (x, y, w, h)
114
 
115
  logging.info("No ROI found, using full image.")
116
+ save_debug_image(img, "07_no_roi_fallback")
117
  return img, None
118
  except Exception as e:
119
  logging.error(f"ROI detection failed: {str(e)}")
120
+ save_debug_image(img, "07_roi_error_fallback")
121
  return img, None
122
 
123
+ def perform_ocr(img, roi_bbox):
124
+ """Perform OCR optimized for digital displays."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  try:
126
  preprocessed = preprocess_image(img)
127
  brightness = estimate_brightness(img)
128
+ # Dynamic thresholding based on brightness
129
+ thresh_value = 0 if brightness < 50 else (127 if brightness < 100 else 200)
130
+ _, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
131
+ save_debug_image(thresh, "08_ocr_threshold")
132
+ # Morphological operations to clean up digits
133
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
134
+ thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
135
+ save_debug_image(thresh, "09_ocr_morph")
136
+
137
+ # Optimized EasyOCR parameters for seven-segment displays
138
  results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
139
+ contrast_ths=0.1, adjust_contrast=1.5,
140
+ text_threshold=0.2, mag_ratio=3.0,
141
+ allowlist='0123456789.', batch_size=1, y_ths=0.2)
142
 
143
  logging.info(f"EasyOCR results: {results}")
144
+ if not results:
145
+ logging.info("No text detected, trying fallback parameters.")
146
+ results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
147
+ contrast_ths=0.05, adjust_contrast=2.0,
148
+ text_threshold=0.1, mag_ratio=4.0,
149
+ allowlist='0123456789.', batch_size=1, y_ths=0.2)
150
+ save_debug_image(thresh, "09_fallback_threshold")
151
+
152
  if not results:
153
  logging.info("No digits found.")
154
+ return None, 0.0
155
 
156
  digits_info = []
157
  for (bbox, text, conf) in results:
158
  (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
159
  h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
160
+ if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1:
161
  x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
162
  y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
163
  digits_info.append((x_min, x_max, y_min, y_max, text, conf))
164
 
165
+ if not digits_info:
166
+ logging.info("No valid digits after filtering.")
167
+ return None, 0.0
168
+
169
  digits_info.sort(key=lambda x: x[0])
170
  recognized_text = ""
171
+ total_conf = 0.0
172
+ conf_count = 0
173
+ for _, _, _, _, char, conf in digits_info:
174
+ recognized_text += char
175
+ total_conf += conf
176
+ conf_count += 1
 
 
 
 
 
 
177
 
178
+ avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
179
+ logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}")
180
+
181
+ # Validate and clean the recognized text
182
  text = re.sub(r"[^\d\.]", "", recognized_text)
183
  if text.count('.') > 1:
184
  text = text.replace('.', '', text.count('.') - 1)
185
+ text = text.strip('.')
186
  if text and re.fullmatch(r"^\d*\.?\d*$", text):
187
+ text = text.lstrip('0') or '0'
188
+ if text == '0' and avg_conf < 0.9:
189
+ avg_conf *= 0.7
190
+ return text, avg_conf * 100
191
  logging.info(f"Text '{recognized_text}' failed validation.")
192
+ return None, 0.0
193
  except Exception as e:
194
+ logging.error(f"OCR failed: {str(e)}")
195
+ return None, 0.0
196
 
197
  def extract_weight_from_image(pil_img):
198
  """Extract weight from a digital scale image."""
 
202
  save_debug_image(img, "00_input_image")
203
  img = correct_rotation(img)
204
  brightness = estimate_brightness(img)
205
+ conf_threshold = 0.5 if brightness > 120 else (0.3 if brightness > 60 else 0.2)
206
 
207
  roi_img, roi_bbox = detect_roi(img)
208
  if roi_bbox:
209
+ conf_threshold *= 1.1 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.4) else 1.0
210
 
211
+ result, confidence = perform_ocr(roi_img, roi_bbox)
212
+ if result and confidence >= conf_threshold * 100:
213
  try:
214
+ weight = float(result)
215
  if 0.00001 <= weight <= 10000:
216
+ logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
217
+ return result, confidence
218
+ logging.warning(f"Weight {result} out of range.")
219
  except ValueError:
220
+ logging.warning(f"Invalid weight format: {result}")
 
 
 
 
 
 
221
 
222
+ logging.info("Primary OCR failed, using full image fallback.")
223
+ result, confidence = perform_ocr(img, None)
224
+ if result and confidence >= conf_threshold * 0.8 * 100:
225
+ try:
226
+ weight = float(result)
227
+ if 0.00001 <= weight <= 10000:
228
+ logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
229
+ return result, confidence
230
+ logging.warning(f"Full image weight {result} out of range.")
231
+ except ValueError:
232
+ logging.warning(f"Invalid full image weight format: {result}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
 
234
+ logging.info("No valid weight detected.")
235
+ return "Not detected", 0.0
236
  except Exception as e:
237
  logging.error(f"Weight extraction failed: {str(e)}")
238
  return "Not detected", 0.0