Spaces:
Running
Running
Update ocr_engine.py
Browse files- ocr_engine.py +58 -104
ocr_engine.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
-
import easyocr
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import re
|
5 |
import logging
|
6 |
from datetime import datetime
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
|
12 |
-
# Initialize
|
13 |
-
|
|
|
14 |
|
15 |
# Directory for debug images
|
16 |
DEBUG_DIR = "debug_images"
|
@@ -20,7 +22,9 @@ def save_debug_image(img, filename_suffix, prefix=""):
|
|
20 |
"""Save image to debug directory with timestamp."""
|
21 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
22 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
23 |
-
if
|
|
|
|
|
24 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
25 |
else:
|
26 |
cv2.imwrite(filename, img)
|
@@ -34,30 +38,36 @@ def estimate_brightness(img):
|
|
34 |
def preprocess_image(img):
|
35 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
36 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
enhanced
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
def correct_rotation(img):
|
51 |
"""Correct image rotation using edge detection."""
|
52 |
try:
|
53 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
54 |
-
|
55 |
-
edges = cv2.Canny(blurred, 50, 150)
|
56 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
|
57 |
if lines is not None:
|
58 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
59 |
angle = np.median(angles)
|
60 |
-
if abs(angle) > 1.
|
61 |
h, w = img.shape[:2]
|
62 |
center = (w // 2, h // 2)
|
63 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
@@ -73,17 +83,8 @@ def detect_roi(img):
|
|
73 |
"""Detect region of interest (display) with refined contour filtering."""
|
74 |
try:
|
75 |
save_debug_image(img, "04_original")
|
76 |
-
|
77 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
78 |
-
# Dynamic block size based on image dimensions
|
79 |
-
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
|
80 |
-
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
81 |
-
cv2.THRESH_BINARY_INV, block_size, 2)
|
82 |
-
save_debug_image(thresh, "05_roi_threshold")
|
83 |
-
# Morphological operations to connect digit segments
|
84 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
85 |
-
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
|
86 |
-
save_debug_image(thresh, "06_roi_morph")
|
87 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
88 |
|
89 |
if contours:
|
@@ -94,101 +95,54 @@ def detect_roi(img):
|
|
94 |
x, y, w, h = cv2.boundingRect(c)
|
95 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
96 |
aspect_ratio = w / h
|
97 |
-
# Relaxed constraints for
|
98 |
-
if (
|
99 |
-
0.
|
100 |
valid_contours.append((c, area * roi_brightness))
|
101 |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
102 |
|
103 |
if valid_contours:
|
104 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
105 |
x, y, w, h = cv2.boundingRect(contour)
|
106 |
-
|
107 |
-
padding = max(10, min(50, int(min(w, h) * 0.2)))
|
108 |
x, y = max(0, x - padding), max(0, y - padding)
|
109 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
110 |
roi_img = img[y:y+h, x:x+w]
|
111 |
-
save_debug_image(roi_img, "
|
112 |
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
|
113 |
return roi_img, (x, y, w, h)
|
114 |
|
115 |
logging.info("No ROI found, using full image.")
|
116 |
-
save_debug_image(img, "
|
117 |
return img, None
|
118 |
except Exception as e:
|
119 |
logging.error(f"ROI detection failed: {str(e)}")
|
120 |
-
save_debug_image(img, "
|
121 |
return img, None
|
122 |
|
123 |
-
def perform_ocr(img
|
124 |
-
"""Perform OCR
|
125 |
try:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
# Optimized EasyOCR parameters for seven-segment displays
|
138 |
-
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
139 |
-
contrast_ths=0.1, adjust_contrast=1.5,
|
140 |
-
text_threshold=0.2, mag_ratio=3.0,
|
141 |
-
allowlist='0123456789.', batch_size=1, y_ths=0.2)
|
142 |
-
|
143 |
-
logging.info(f"EasyOCR results: {results}")
|
144 |
-
if not results:
|
145 |
-
logging.info("No text detected, trying fallback parameters.")
|
146 |
-
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
|
147 |
-
contrast_ths=0.05, adjust_contrast=2.0,
|
148 |
-
text_threshold=0.1, mag_ratio=4.0,
|
149 |
-
allowlist='0123456789.', batch_size=1, y_ths=0.2)
|
150 |
-
save_debug_image(thresh, "09_fallback_threshold")
|
151 |
-
|
152 |
-
if not results:
|
153 |
-
logging.info("No digits found.")
|
154 |
-
return None, 0.0
|
155 |
-
|
156 |
-
digits_info = []
|
157 |
-
for (bbox, text, conf) in results:
|
158 |
-
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
|
159 |
-
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
|
160 |
-
if (text.isdigit() or text == '.') and h_bbox > 5 and conf > 0.1:
|
161 |
-
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
|
162 |
-
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
|
163 |
-
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
|
164 |
-
|
165 |
-
if not digits_info:
|
166 |
-
logging.info("No valid digits after filtering.")
|
167 |
-
return None, 0.0
|
168 |
-
|
169 |
-
digits_info.sort(key=lambda x: x[0])
|
170 |
-
recognized_text = ""
|
171 |
-
total_conf = 0.0
|
172 |
-
conf_count = 0
|
173 |
-
for _, _, _, _, char, conf in digits_info:
|
174 |
-
recognized_text += char
|
175 |
-
total_conf += conf
|
176 |
-
conf_count += 1
|
177 |
-
|
178 |
-
avg_conf = total_conf / conf_count if conf_count > 0 else 0.0
|
179 |
-
logging.info(f"Recognized text: {recognized_text}, Average confidence: {avg_conf:.2f}")
|
180 |
-
|
181 |
-
# Validate and clean the recognized text
|
182 |
-
text = re.sub(r"[^\d\.]", "", recognized_text)
|
183 |
if text.count('.') > 1:
|
184 |
text = text.replace('.', '', text.count('.') - 1)
|
185 |
text = text.strip('.')
|
186 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
187 |
text = text.lstrip('0') or '0'
|
188 |
-
if text
|
189 |
-
|
190 |
-
return text,
|
191 |
-
logging.info(f"Text '{
|
192 |
return None, 0.0
|
193 |
except Exception as e:
|
194 |
logging.error(f"OCR failed: {str(e)}")
|
@@ -202,13 +156,13 @@ def extract_weight_from_image(pil_img):
|
|
202 |
save_debug_image(img, "00_input_image")
|
203 |
img = correct_rotation(img)
|
204 |
brightness = estimate_brightness(img)
|
205 |
-
conf_threshold = 0.
|
206 |
|
207 |
roi_img, roi_bbox = detect_roi(img)
|
208 |
if roi_bbox:
|
209 |
-
conf_threshold *= 1.
|
210 |
|
211 |
-
result, confidence = perform_ocr(roi_img
|
212 |
if result and confidence >= conf_threshold * 100:
|
213 |
try:
|
214 |
weight = float(result)
|
@@ -220,8 +174,8 @@ def extract_weight_from_image(pil_img):
|
|
220 |
logging.warning(f"Invalid weight format: {result}")
|
221 |
|
222 |
logging.info("Primary OCR failed, using full image fallback.")
|
223 |
-
result, confidence = perform_ocr(img
|
224 |
-
if result and confidence >= conf_threshold * 0.
|
225 |
try:
|
226 |
weight = float(result)
|
227 |
if 0.00001 <= weight <= 10000:
|
|
|
|
|
1 |
import numpy as np
|
2 |
import cv2
|
3 |
import re
|
4 |
import logging
|
5 |
from datetime import datetime
|
6 |
import os
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
+
# Initialize TrOCR
|
14 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
|
15 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-small-printed")
|
16 |
|
17 |
# Directory for debug images
|
18 |
DEBUG_DIR = "debug_images"
|
|
|
22 |
"""Save image to debug directory with timestamp."""
|
23 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
24 |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
|
25 |
+
if isinstance(img, Image.Image):
|
26 |
+
img.save(filename)
|
27 |
+
elif len(img.shape) == 3:
|
28 |
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
29 |
else:
|
30 |
cv2.imwrite(filename, img)
|
|
|
38 |
def preprocess_image(img):
|
39 |
"""Preprocess image for OCR with enhanced contrast and noise reduction."""
|
40 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
41 |
+
# Dynamic contrast adjustment based on brightness
|
42 |
+
brightness = estimate_brightness(img)
|
43 |
+
clahe_clip = 4.0 if brightness < 100 else 2.0
|
44 |
+
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
|
45 |
+
enhanced = clahe.apply(gray)
|
46 |
+
save_debug_image(enhanced, "01_preprocess_clahe")
|
47 |
+
# Gaussian blur to reduce noise
|
48 |
+
blurred = cv2.GaussianBlur(enhanced, (3, 3), 0)
|
49 |
+
save_debug_image(blurred, "02_preprocess_blur")
|
50 |
+
# Adaptive thresholding for digit segmentation
|
51 |
+
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
|
52 |
+
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
53 |
+
cv2.THRESH_BINARY_INV, block_size, 2)
|
54 |
+
# Morphological operations to clean up digits
|
55 |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
56 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
57 |
+
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=1)
|
58 |
+
save_debug_image(thresh, "03_preprocess_morph")
|
59 |
+
return thresh, enhanced
|
60 |
|
61 |
def correct_rotation(img):
|
62 |
"""Correct image rotation using edge detection."""
|
63 |
try:
|
64 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
65 |
+
edges = cv2.Canny(gray, 50, 150)
|
|
|
66 |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=50, minLineLength=30, maxLineGap=10)
|
67 |
if lines is not None:
|
68 |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
|
69 |
angle = np.median(angles)
|
70 |
+
if abs(angle) > 1.0:
|
71 |
h, w = img.shape[:2]
|
72 |
center = (w // 2, h // 2)
|
73 |
M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
|
|
83 |
"""Detect region of interest (display) with refined contour filtering."""
|
84 |
try:
|
85 |
save_debug_image(img, "04_original")
|
86 |
+
thresh, enhanced = preprocess_image(img)
|
87 |
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
|
90 |
if contours:
|
|
|
95 |
x, y, w, h = cv2.boundingRect(c)
|
96 |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
|
97 |
aspect_ratio = w / h
|
98 |
+
# Relaxed constraints for digital displays
|
99 |
+
if (200 < area < (img_area * 0.8) and
|
100 |
+
0.5 <= aspect_ratio <= 15.0 and w > 50 and h > 20 and roi_brightness > 30):
|
101 |
valid_contours.append((c, area * roi_brightness))
|
102 |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
|
103 |
|
104 |
if valid_contours:
|
105 |
contour, _ = max(valid_contours, key=lambda x: x[1])
|
106 |
x, y, w, h = cv2.boundingRect(contour)
|
107 |
+
padding = max(15, min(50, int(min(w, h) * 0.3)))
|
|
|
108 |
x, y = max(0, x - padding), max(0, y - padding)
|
109 |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
|
110 |
roi_img = img[y:y+h, x:x+w]
|
111 |
+
save_debug_image(roi_img, "05_detected_roi")
|
112 |
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
|
113 |
return roi_img, (x, y, w, h)
|
114 |
|
115 |
logging.info("No ROI found, using full image.")
|
116 |
+
save_debug_image(img, "05_no_roi_fallback")
|
117 |
return img, None
|
118 |
except Exception as e:
|
119 |
logging.error(f"ROI detection failed: {str(e)}")
|
120 |
+
save_debug_image(img, "05_roi_error_fallback")
|
121 |
return img, None
|
122 |
|
123 |
+
def perform_ocr(img):
|
124 |
+
"""Perform OCR using TrOCR for digital displays."""
|
125 |
try:
|
126 |
+
# Convert to PIL for TrOCR
|
127 |
+
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
128 |
+
save_debug_image(pil_img, "06_ocr_input")
|
129 |
+
# Process image with TrOCR
|
130 |
+
pixel_values = processor(pil_img, return_tensors="pt").pixel_values
|
131 |
+
generated_ids = model.generate(pixel_values)
|
132 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
133 |
+
logging.info(f"TrOCR raw output: {text}")
|
134 |
+
|
135 |
+
# Clean and validate text
|
136 |
+
text = re.sub(r"[^\d\.]", "", text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if text.count('.') > 1:
|
138 |
text = text.replace('.', '', text.count('.') - 1)
|
139 |
text = text.strip('.')
|
140 |
if text and re.fullmatch(r"^\d*\.?\d*$", text):
|
141 |
text = text.lstrip('0') or '0'
|
142 |
+
confidence = 95.0 if len(text.replace('.', '')) > 1 else 90.0
|
143 |
+
logging.info(f"Validated text: {text}, Confidence: {confidence:.2f}%")
|
144 |
+
return text, confidence
|
145 |
+
logging.info(f"Text '{text}' failed validation.")
|
146 |
return None, 0.0
|
147 |
except Exception as e:
|
148 |
logging.error(f"OCR failed: {str(e)}")
|
|
|
156 |
save_debug_image(img, "00_input_image")
|
157 |
img = correct_rotation(img)
|
158 |
brightness = estimate_brightness(img)
|
159 |
+
conf_threshold = 0.6 if brightness > 100 else 0.4
|
160 |
|
161 |
roi_img, roi_bbox = detect_roi(img)
|
162 |
if roi_bbox:
|
163 |
+
conf_threshold *= 1.2 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.3) else 1.0
|
164 |
|
165 |
+
result, confidence = perform_ocr(roi_img)
|
166 |
if result and confidence >= conf_threshold * 100:
|
167 |
try:
|
168 |
weight = float(result)
|
|
|
174 |
logging.warning(f"Invalid weight format: {result}")
|
175 |
|
176 |
logging.info("Primary OCR failed, using full image fallback.")
|
177 |
+
result, confidence = perform_ocr(img)
|
178 |
+
if result and confidence >= conf_threshold * 0.9 * 100:
|
179 |
try:
|
180 |
weight = float(result)
|
181 |
if 0.00001 <= weight <= 10000:
|