Spaces:
Sleeping
Sleeping
File size: 5,745 Bytes
5095fe6 9156c8e 2138290 9156c8e 2138290 b80f5d2 9156c8e b80f5d2 9156c8e b80f5d2 eca7f1c 9156c8e 8e0f60f 9156c8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [12.9716, 77.5946]
}
# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
alert_level = 'Green'
anomaly_details = []
if tilt_angle > 30 or vibration > 3:
alert_level = 'Yellow'
anomaly_details.append("Tilt or Vibration threshold exceeded.")
if tilt_angle > 40 or vibration > 4.5:
alert_level = 'Red'
anomaly_details.append("Critical tilt or vibration detected.")
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (Β°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': "; ".join(anomaly_details),
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("π Smart Renewable Pole Monitoring - Multi-Site")
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")
if selected_site in SITES:
with st.spinner(f"Simulating poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(POLES_PER_SITE)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Summary Metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", site_df.shape[0])
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
# Table View
st.subheader(f"π Pole Data Table for {selected_site}")
with st.expander("Filter Options"):
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
st.dataframe(filtered_df, use_container_width=True)
# Charts
st.subheader("π Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("π Tilt vs. Vibration")
st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])
# ---- Map Section with Tooltip ----
st.subheader("π Pole Alert Levels (Green, Yellow, Red)")
def alert_level_to_color(alert_level):
if alert_level == 'Red':
return [255, 0, 0, 160] # Red
elif alert_level == 'Yellow':
return [255, 255, 0, 160] # Yellow
else:
return [0, 255, 0, 160] # Green
if not site_df.empty:
site_df = site_df.copy()
site_df['Color'] = site_df['Alert Level'].apply(alert_level_to_color)
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=site_df,
get_position='[Longitude, Latitude]',
get_color='Color',
get_radius=100,
pickable=True
)
],
tooltip={
"html": "<b>Pole ID:</b> {Pole ID}<br/>"
"<b>Health Score:</b> {Health Score}<br/>"
"<b>Alert Level:</b> {Alert Level}<br/>"
"<b>Power Status:</b> {Power Status}<br/>"
"<b>Camera Status:</b> {Camera Status}<br/>"
"<b>Last Checked:</b> {Last Checked}",
"style": {
"backgroundColor": "black",
"color": "white"
}
}
))
st.markdown("<h3 style='text-align: center;'>Click on a pole to view details</h3>", unsafe_allow_html=True)
else:
st.info("No poles data available for this site.")
else:
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")
|