File size: 997 Bytes
edce0df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from joblib import dump, load

MODEL_PATH = "heating_model.pkl"
DATA_PATH = "mantle_training.csv"
HISTORY = []

def load_model():
    return load(MODEL_PATH)

model = load_model()

def predict_risk(temp, duration):
    global model
    pred = model.predict([[temp, duration]])[0]
    score = max(model.predict_proba([[temp, duration]])[0]) * 100
    HISTORY.append({"Temperature": temp, "Duration": duration, "Risk": pred, "Confidence": round(score, 2)})
    return pred, round(score, 2)

def retrain_model():
    try:
        data = pd.read_csv(DATA_PATH)
        X = data[["temperature", "duration"]]
        y = data["risk_level"]
        clf = RandomForestClassifier().fit(X, y)
        dump(clf, MODEL_PATH)
        global model
        model = clf
        return "✅ Model retrained successfully"
    except Exception as e:
        return f"❌ Error: {str(e)}"

def get_history_df():
    return pd.DataFrame(HISTORY)