Spaces:
Sleeping
Sleeping
import gradio as gr | |
from risk_model import predict_risk, retrain_model, get_history_df | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor") | |
with gr.Row(): | |
temp = gr.Number(label="Max Temperature (°C)", value=100) | |
duration = gr.Number(label="Duration (min)", value=30) | |
with gr.Row(): | |
predict_btn = gr.Button("🔍 Predict") | |
retrain_btn = gr.Button("🔁 Retrain Model") | |
result = gr.Textbox(label="Risk Prediction") | |
alert = gr.Textbox(label="🚨 Alert Message") | |
ist_time = gr.Textbox(label="Timestamp (IST)") | |
retrain_output = gr.Textbox(label="Retrain Status") | |
summary = gr.Markdown() | |
history_table = gr.Dataframe(headers=["Temperature", "Duration", "Risk", "Timestamp"], label="📈 Prediction History") | |
plot = gr.Plot(label="📊 Risk Trend Chart") | |
def classify(temp, duration): | |
if temp <= 0 or duration <= 0: | |
return "❌ Invalid", "Invalid", "Invalid", "", pd.DataFrame(), plt.figure() | |
risk, timestamp = predict_risk(temp, duration) | |
if risk == "Low": | |
alert_msg = "✅ SAFE - No action needed" | |
elif risk == "Moderate": | |
alert_msg = "⚠️ SAFE - Monitor closely" | |
else: | |
alert_msg = "🔥 SHUTDOWN - Immediate attention needed" | |
summary_md = f""" | |
### 🔎 Summary | |
- **Max Temp**: {temp} °C | |
- **Duration**: {duration} min | |
- **Risk**: {risk} | |
- **Timestamp**: {timestamp} | |
- **Alert**: {alert_msg} | |
""" | |
df = get_history_df() | |
# Convert Risk to numeric for plotting | |
risk_map = {'Low': 1, 'Moderate': 2, 'High': 3} | |
df["Risk_Num"] = df["Risk"].map(risk_map) | |
fig, ax = plt.subplots(figsize=(6, 3)) | |
ax.plot(df["Timestamp"], df["Risk_Num"], marker="o", linestyle="-", color="red") | |
a | |