Risk1 / app.py
Sanjayraju30's picture
Update app.py
6227435 verified
raw
history blame
1.91 kB
import gradio as gr
from risk_model import predict_risk, retrain_model, get_history_df
import pandas as pd
import matplotlib.pyplot as plt
with gr.Blocks() as demo:
gr.Markdown("## 🔥 Heating Mantle Safety Risk Predictor")
with gr.Row():
temp = gr.Number(label="Max Temperature (°C)", value=100)
duration = gr.Number(label="Duration (min)", value=30)
with gr.Row():
predict_btn = gr.Button("🔍 Predict")
retrain_btn = gr.Button("🔁 Retrain Model")
result = gr.Textbox(label="Risk Prediction")
alert = gr.Textbox(label="🚨 Alert Message")
ist_time = gr.Textbox(label="Timestamp (IST)")
retrain_output = gr.Textbox(label="Retrain Status")
summary = gr.Markdown()
history_table = gr.Dataframe(headers=["Temperature", "Duration", "Risk", "Timestamp"], label="📈 Prediction History")
plot = gr.Plot(label="📊 Risk Trend Chart")
def classify(temp, duration):
if temp <= 0 or duration <= 0:
return "❌ Invalid", "Invalid", "Invalid", "", pd.DataFrame(), plt.figure()
risk, timestamp = predict_risk(temp, duration)
if risk == "Low":
alert_msg = "✅ SAFE - No action needed"
elif risk == "Moderate":
alert_msg = "⚠️ SAFE - Monitor closely"
else:
alert_msg = "🔥 SHUTDOWN - Immediate attention needed"
summary_md = f"""
### 🔎 Summary
- **Max Temp**: {temp} °C
- **Duration**: {duration} min
- **Risk**: {risk}
- **Timestamp**: {timestamp}
- **Alert**: {alert_msg}
"""
df = get_history_df()
# Convert Risk to numeric for plotting
risk_map = {'Low': 1, 'Moderate': 2, 'High': 3}
df["Risk_Num"] = df["Risk"].map(risk_map)
fig, ax = plt.subplots(figsize=(6, 3))
ax.plot(df["Timestamp"], df["Risk_Num"], marker="o", linestyle="-", color="red")
a