Spaces:
Running
Running
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
import re | |
# Load TrOCR processor and model once | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def clean_ocr_text(text): | |
# Fix common OCR mistakes | |
text = text.replace(",", ".") # comma to dot | |
text = re.sub(r"[^\d\.kg]", "", text.lower()) # keep only digits, dot, k, g | |
return text | |
def extract_weight(image): | |
try: | |
# TrOCR inference | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
print("OCR Raw Output:", raw_text) | |
# Clean and normalize text | |
cleaned_text = clean_ocr_text(raw_text) | |
print("Cleaned OCR:", cleaned_text) | |
# Flexible regex to catch even minor issues (e.g., 52.2g, 98.7kg) | |
pattern = r'(\d{1,5}(?:\.\d{1,3})?)\s*(kg|g)' | |
match = re.search(pattern, cleaned_text) | |
if match: | |
value = match.group(1) | |
unit = match.group(2) | |
return f"{value} {unit}" | |
else: | |
return "No valid weight found" | |
except Exception as e: | |
return f"Error: {str(e)}" | |