Spaces:
Running
Running
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image, ImageEnhance | |
import re | |
# Load processor + model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def extract_weight(image: Image.Image) -> str: | |
# Crop only display region (adjust based on your image format) | |
width, height = image.size | |
display_area = image.crop((width * 0.35, height * 0.1, width * 0.65, height * 0.25)) # crop display center | |
# Enhance contrast & sharpness | |
display_area = display_area.convert("L") # grayscale | |
display_area = ImageEnhance.Contrast(display_area).enhance(2.0) | |
display_area = ImageEnhance.Sharpness(display_area).enhance(2.5) | |
display_area = display_area.convert("RGB") | |
# OCR | |
pixel_values = processor(images=display_area, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values, max_length=32) | |
full_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Clean & parse | |
cleaned = full_text.lower().replace(" ", "") | |
match = re.search(r"(\d+(\.\d+)?)", cleaned) | |
weight = match.group(1) if match else None | |
if any(u in cleaned for u in ["kg", "kgs", "kilogram", "kilo"]): | |
unit = "kg" | |
elif any(u in cleaned for u in ["g", "gram", "grams"]): | |
unit = "grams" | |
else: | |
unit = "kg" if weight and float(weight) >= 20 else "grams" | |
return f"{weight} {unit}" if weight else "" | |