Spaces:
Running
Running
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image, ImageFilter | |
import torch | |
import re | |
# Load model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def clean_ocr_text(text): | |
print("[RAW OCR]", text) | |
text = text.replace(",", ".").replace("s", "5").replace("o", "0").replace("O", "0") | |
text = re.sub(r"[^\d.kg]", "", text.lower()) # Keep digits, dots, and kg | |
print("[CLEANED OCR]", text) | |
return text | |
def restore_decimal(text): | |
if re.fullmatch(r"\d{5}", text): | |
return f"{text[:2]}.{text[2:]}" | |
elif re.fullmatch(r"\d{4}", text): | |
return f"{text[:2]}.{text[2:]}" | |
return text | |
def extract_weight(image): | |
try: | |
image = image.resize((image.width * 2, image.height * 2), Image.BICUBIC) | |
image = image.filter(ImageFilter.SHARPEN) | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
cleaned = clean_ocr_text(raw_text) | |
# Try direct match: e.g., 52.25 kg or 75.0 g | |
match = re.search(r"(\d{1,3}\.\d{1,3})\s*(kg|g)", cleaned) | |
if match: | |
return f"{match.group(1)} {match.group(2)}" | |
# Try fallback: extract digits and manually guess decimal | |
fallback_match = re.search(r"(\d{4,5})", cleaned) | |
if fallback_match: | |
fallback_value = restore_decimal(fallback_match.group(1)) | |
# Check for presence of unit hints in raw_text | |
unit = "kg" if "kg" in raw_text.lower() else "g" | |
return f"{fallback_value} {unit}" | |
return f"No valid weight found | OCR: {cleaned}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |