logger2 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
d07e9f7 verified
raw
history blame
1.92 kB
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image, ImageFilter
import torch
import re
# Load model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
def clean_ocr_text(text):
print("[RAW OCR]", text)
text = text.replace(",", ".").replace("s", "5").replace("o", "0").replace("O", "0")
text = re.sub(r"[^\d.kg]", "", text.lower()) # Keep digits, dots, and kg
print("[CLEANED OCR]", text)
return text
def restore_decimal(text):
if re.fullmatch(r"\d{5}", text):
return f"{text[:2]}.{text[2:]}"
elif re.fullmatch(r"\d{4}", text):
return f"{text[:2]}.{text[2:]}"
return text
def extract_weight(image):
try:
image = image.resize((image.width * 2, image.height * 2), Image.BICUBIC)
image = image.filter(ImageFilter.SHARPEN)
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
raw_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
cleaned = clean_ocr_text(raw_text)
# Try direct match: e.g., 52.25 kg or 75.0 g
match = re.search(r"(\d{1,3}\.\d{1,3})\s*(kg|g)", cleaned)
if match:
return f"{match.group(1)} {match.group(2)}"
# Try fallback: extract digits and manually guess decimal
fallback_match = re.search(r"(\d{4,5})", cleaned)
if fallback_match:
fallback_value = restore_decimal(fallback_match.group(1))
# Check for presence of unit hints in raw_text
unit = "kg" if "kg" in raw_text.lower() else "g"
return f"{fallback_value} {unit}"
return f"No valid weight found | OCR: {cleaned}"
except Exception as e:
return f"Error: {str(e)}"