Spaces:
Sleeping
Sleeping
File size: 10,878 Bytes
76bfb75 bddf29f 2d6a87c 2d48be5 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 7e1f943 4119a04 7f91fc3 4119a04 61e6b62 443053b 8c3b0f0 443053b 8c3b0f0 d2b24d8 8c3b0f0 d2b24d8 443053b bddf29f e4d07f2 443053b 61e6b62 3fca7f2 3d103e2 f7bb109 3d103e2 3fca7f2 3d103e2 443053b e4d07f2 bddf29f 1398651 21e8468 de38b62 bddf29f 99fe899 1398651 0b34e59 8d1b0ca 0b34e59 1bf26c9 4119a04 1bf26c9 4119a04 5c957ad 5946b43 81c73a1 de38b62 81c73a1 5946b43 4119a04 294c24c 4119a04 fa36f72 db05398 e9c524f 5c957ad 8c3b0f0 60cbd2f 5946b43 8c3b0f0 5c957ad 77698e2 7f91fc3 4119a04 d95655c 76bfb75 0b34e59 1446dbe 7e1f943 21e8468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import pandas as pd
def data_pre_processing(file_responses):
# Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
try: # Define the columns to be processed
# Developing Numeric Columns
# Convert columns to numeric and fill NaN values with 0
file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
# Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']
# Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
# Renaming the datasets into similar column headings
initial_dataset_1 = file_responses.rename(columns={
'Personal_TaxDirection_1_Wish': 'Problem_Description',
'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_2 = file_responses.rename(columns={
'Personal_TaxDirection_2_Wish': 'Problem_Description',
'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_3 = file_responses.rename(columns={
'Personal_TaxDirection_3_Wish': 'Problem_Description',
'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
# Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
# Removing useless rows
# Drop rows where Problem_Description is NaN or an empty string
initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
# Convert 'Problem_Description' column to string type
initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
# Merging the Datasets
# Vertically concatenating (merging) the 3 DataFrames
merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)
# Different return can be used to check the processing
# return file_responses
return merged_dataset
except Exception as e:
return str(e)
import spacy
from transformers import AutoTokenizer, AutoModel
import torch
# Load SpaCy model
nlp = spacy.load('en_core_web_sm')
# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
# def combined_text_processing(text):
# # Basic NLP processing using SpaCy
# doc = nlp(text)
# lemmatized_text = ' '.join([token.lemma_ for token in doc])
# # Advanced text representation using Hugging Face Transformers
# inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
# with torch.no_grad():
# outputs = model(**inputs)
# return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
def combined_text_processing(text):
# Remove punctuation, numbers, URLs, and special characters
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation and special characters
text = re.sub(r'\d+', '', text) # Remove numbers
text = re.sub(r'http\S+', '', text) # Remove URLs
# Tokenize and remove stopwords
tokens = word_tokenize(text.lower()) # Convert to lowercase
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Lemmatize tokens using SpaCy
doc = nlp(' '.join(tokens))
lemmatized_text = ' '.join([token.lemma_ for token in doc])
# Apply Hugging Face Transformers
inputs = tokenizer(lemmatized_text, return_tensors="pt", truncation=False, padding=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
def nlp_pipeline(original_df):
# Data Preprocessing
processed_df = data_pre_processing(original_df)
# Apply the combined function to your DataFrame
processed_df['Processed_ProblemDescription'] = processed_df['Problem_Description'].apply(combined_text_processing)
return processed_df
def process_excel(file):
try:
# Ensure the file path is correct
file_path = file.name if hasattr(file, 'name') else file
# Read the Excel file
df = pd.read_excel(file_path)
# Process the DataFrame
result_df = nlp_pipeline(df)
output_file = "Output_ProjectProposals.xlsx"
result_df.to_excel(output_file, index=False)
return output_file # Return the processed DataFrame as Excel file
except Exception as e:
return str(e) # Return the error message
example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
'#TaxDirection (Responses)_IntermediateExample.xlsx',
'#TaxDirection (Responses)_UltimateExample.xlsx'
]
import random
a_random_object = random.choice(["⇒", "↣", "↠", "→"])
# Define the Gradio interface
interface = gr.Interface(
fn=process_excel, # The function to process the uploaded file
inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"), # File upload input
examples=example_files, # Add the example files
# outputs=gr.File(label="Download Processed Excel File"), # File download output
outputs=gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
# title="Excel File Uploader",
# title="Upload Excel file containing #TaxDirections → Download HyperLocal Project Proposals\n",
title = (
"<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
"<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
# "<span style='color: brown; font-size: 35px;'>→ </span>"
# "<span style='color: brown; font-size: 35px;'>⇒ ↣ ↠ </span>"
"<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
"<span style='color: green;'>Download HyperLocal Project Proposals</span>"
"</p>\n"
),
description=(
"<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
"<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
"<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
"<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
"<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"
"<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
) # Solid description with right-aligned second sentence
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |