Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
# Fetch Hugging Face and Groq API keys from secrets | |
Transalate_token = os.getenv('HUGGINGFACE_TOKEN') | |
Image_Token = os.getenv('HUGGINGFACE_TOKEN') | |
Content_Token = os.getenv('GROQ_API_KEY') | |
Image_prompt_token = os.getenv('GROQ_API_KEY') | |
# API Headers | |
Translate = {"Authorization": f"Bearer {Transalate_token}"} | |
Image_generation = {"Authorization": f"Bearer {Image_Token}"} | |
Content_generation = { | |
"Authorization": f"Bearer {Content_Token}", | |
"Content-Type": "application/json" | |
} | |
Image_Prompt = { | |
"Authorization": f"Bearer {Image_prompt_token}", | |
"Content-Type": "application/json" | |
} | |
# Translation Model API URL (Tamil to English) | |
translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt" | |
# Text-to-Image Model API URL | |
image_generation_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
# Function to query Hugging Face translation model | |
def translate_text(text): | |
payload = {"inputs": text} | |
response = requests.post(translation_url, headers=Translate, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
translated_text = result[0]['generated_text'] | |
return translated_text | |
else: | |
st.error(f"Translation Error {response.status_code}: {response.text}") | |
st.write(f'Please try after sometime 😥😥😥') | |
return None | |
# Function to query Groq content generation model | |
def generate_content(english_text, max_tokens, temperature): | |
url = "https://api.groq.com/openai/v1/chat/completions" | |
payload = { | |
"model": "llama-3.1-70b-versatile", | |
"messages": [ | |
{"role": "system", "content": "You are a creative and insightful writer."}, | |
{"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."} | |
], | |
"max_tokens": max_tokens, | |
"temperature": temperature | |
} | |
response = requests.post(url, json=payload, headers=Content_generation) | |
if response.status_code == 200: | |
result = response.json() | |
return result['choices'][0]['message']['content'] | |
else: | |
st.error(f"Content Generation Error: {response.status_code}") | |
return None | |
# Function to generate image prompt | |
def generate_image_prompt(english_text): | |
payload = { | |
"model": "mixtral-8x7b-32768", | |
"messages": [ | |
{"role": "system", "content": "You are a professional Text to image prompt generator."}, | |
{"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."} | |
], | |
"max_tokens": 30 | |
} | |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt) | |
if response.status_code == 200: | |
result = response.json() | |
return result['choices'][0]['message']['content'] | |
else: | |
st.error(f"Prompt Generation Error: {response.status_code}") | |
return None | |
# Function to generate an image from the prompt | |
def generate_image(image_prompt): | |
data = {"inputs": image_prompt} | |
response = requests.post(image_generation_url, headers=Image_generation, json=data) | |
if response.status_code == 200: | |
return response.content | |
else: | |
st.error(f"Image Generation Error {response.status_code}: {response.text}") | |
return None | |
# Main Streamlit app | |
def main(): | |
# Custom CSS for background, borders, and other styling | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-image: url('https://wallpapercave.com/wp/wp4008910.jpg'); | |
background-size: cover; | |
} | |
.reportview-container { | |
background: rgba(255, 255, 255, 0.85); | |
padding: 2rem; | |
border-radius: 10px; | |
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.1); | |
} | |
.result-container { | |
border: 2px solid #4CAF50; | |
padding: 20px; | |
border-radius: 10px; | |
margin-top: 20px; | |
animation: fadeIn 2s ease; | |
} | |
@keyframes fadeIn { | |
0% { opacity: 0; } | |
100% { opacity: 1; } | |
} | |
.stButton button { | |
background-color: #4CAF50; | |
color: white; | |
border-radius: 10px; | |
padding: 10px; | |
} | |
.stButton button:hover { | |
background-color: #45a049; | |
transform: scale(1.05); | |
transition: 0.2s ease-in-out; | |
} | |
</style> | |
""", unsafe_allow_html=True | |
) | |
st.title("🅰️ℹ️ FusionMind ➡️ Multimodal Generator 🤖") | |
# Sidebar for temperature and token adjustment | |
st.sidebar.header("Settings") | |
temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7) | |
max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200) | |
# Suggested inputs | |
st.write("## Suggested Inputs") | |
suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"] | |
selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions) | |
# Input box for user | |
tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion) | |
if st.button("Generate"): | |
# Step 1: Translation (Tamil to English) | |
if tamil_input: | |
st.write("### Translated English Text:") | |
english_text = translate_text(tamil_input) | |
if english_text: | |
st.success(english_text) | |
# Step 2: Generate Educational Content | |
st.write("### Generated Educational Content:") | |
with st.spinner('Generating content...'): | |
content_output = generate_content(english_text, max_tokens, temperature) | |
if content_output: | |
st.success(content_output) | |
# Step 3: Generate Image from the prompt | |
st.write("### Generated Image:") | |
with st.spinner('Generating image...'): | |
image_prompt = generate_image_prompt(english_text) | |
image_data = generate_image(image_prompt) | |
if image_data: | |
st.image(image_data, caption="Generated Image") | |
if __name__ == "__main__": | |
main() | |