Spaces:
Running
Running
File size: 5,584 Bytes
95f8bbc aa34300 95f8bbc aa34300 95f8bbc aa34300 95f8bbc aa34300 95f8bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch.nn as nn
import torch.utils.data
import numpy as np
from opt import opt
from dataloader import WebcamLoader, DataWriter, crop_from_dets, Mscoco
from yolo.darknet import Darknet
from yolo.util import write_results, dynamic_write_results
from SPPE.src.main_fast_inference import *
from SPPE.src.utils.img import im_to_torch
import os
import sys
from tqdm import tqdm
import time
from fn import getTime
import cv2
from pPose_nms import write_json
args = opt
args.dataset = 'coco'
def loop():
n = 0
while True:
yield n
n += 1
if __name__ == "__main__":
webcam = args.webcam
mode = args.mode
if not os.path.exists(args.outputpath):
os.mkdir(args.outputpath)
# Load input video
fvs = WebcamLoader(webcam).start()
(fourcc, fps, frameSize) = fvs.videoinfo()
# Data writer
save_path = os.path.join(args.outputpath, 'AlphaPose_webcam' + webcam + '.avi')
writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start()
# Load YOLO model
print('Loading YOLO model..')
sys.stdout.flush()
det_model = Darknet("yolo/cfg/yolov3-spp.cfg")
det_model.load_weights('models/yolo/yolov3-spp.weights')
det_model.net_info['height'] = args.inp_dim
det_inp_dim = int(det_model.net_info['height'])
assert det_inp_dim % 32 == 0
assert det_inp_dim > 32
det_model
det_model.eval()
# Load pose model
pose_dataset = Mscoco()
if args.fast_inference:
pose_model = InferenNet_fast(4 * 1 + 1, pose_dataset)
else:
pose_model = InferenNet(4 * 1 + 1, pose_dataset)
pose_model
pose_model.eval()
runtime_profile = {
'ld': [],
'dt': [],
'dn': [],
'pt': [],
'pn': []
}
print('Starting webcam demo, press Ctrl + C to terminate...')
sys.stdout.flush()
im_names_desc = tqdm(loop())
for i in im_names_desc:
try:
start_time = getTime()
(img, orig_img, inp, im_dim_list) = fvs.read()
ckpt_time, load_time = getTime(start_time)
runtime_profile['ld'].append(load_time)
with torch.no_grad():
# Human Detection
img = Variable(img)
im_dim_list = im_dim_list
prediction = det_model(img, CUDA=True)
ckpt_time, det_time = getTime(ckpt_time)
runtime_profile['dt'].append(det_time)
# NMS process
dets = dynamic_write_results(prediction, opt.confidence,
opt.num_classes, nms=True, nms_conf=opt.nms_thesh)
if isinstance(dets, int) or dets.shape[0] == 0:
writer.save(None, None, None, None, None, orig_img, im_name=str(i) + '.jpg')
continue
im_dim_list = torch.index_select(im_dim_list, 0, dets[:, 0].long())
scaling_factor = torch.min(det_inp_dim / im_dim_list, 1)[0].view(-1, 1)
# coordinate transfer
dets[:, [1, 3]] -= (det_inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
dets[:, [2, 4]] -= (det_inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2
dets[:, 1:5] /= scaling_factor
for j in range(dets.shape[0]):
dets[j, [1, 3]] = torch.clamp(dets[j, [1, 3]], 0.0, im_dim_list[j, 0])
dets[j, [2, 4]] = torch.clamp(dets[j, [2, 4]], 0.0, im_dim_list[j, 1])
boxes = dets[:, 1:5].cpu()
scores = dets[:, 5:6].cpu()
ckpt_time, detNMS_time = getTime(ckpt_time)
runtime_profile['dn'].append(detNMS_time)
# Pose Estimation
inps = torch.zeros(boxes.size(0), 3, opt.inputResH, opt.inputResW)
pt1 = torch.zeros(boxes.size(0), 2)
pt2 = torch.zeros(boxes.size(0), 2)
inps, pt1, pt2 = crop_from_dets(inp, boxes, inps, pt1, pt2)
inps = Variable(inps)
hm = pose_model(inps)
ckpt_time, pose_time = getTime(ckpt_time)
runtime_profile['pt'].append(pose_time)
writer.save(boxes, scores, hm.cpu(), pt1, pt2, orig_img, im_name=str(i) + '.jpg')
ckpt_time, post_time = getTime(ckpt_time)
runtime_profile['pn'].append(post_time)
# TQDM
im_names_desc.set_description(
'load time: {ld:.4f} | det time: {dt:.4f} | det NMS: {dn:.4f} | pose time: {pt:.4f} | post process: {pn:.4f}'.format(
ld=np.mean(runtime_profile['ld']), dt=np.mean(runtime_profile['dt']), dn=np.mean(runtime_profile['dn']),
pt=np.mean(runtime_profile['pt']), pn=np.mean(runtime_profile['pn']))
)
except KeyboardInterrupt:
break
print(' ')
print('===========================> Finish Model Running.')
if (args.save_img or args.save_video) and not args.vis_fast:
print('===========================> Rendering remaining images in the queue...')
print('===========================> If this step takes too long, you can enable the --vis_fast flag to use fast rendering (real-time).')
while writer.running():
pass
writer.stop()
final_result = writer.results()
write_json(final_result, args.outputpath)
|