Video2MC / HPE2keyframes.py
Sapphire-356's picture
add: Video2MC
95f8bbc
raw
history blame
12.4 kB
import numpy as np
import matplotlib.pyplot as plt
import pickle
import torch
import torch.nn.functional as F
from scipy.spatial.transform import Rotation
from scipy.ndimage import binary_erosion, binary_dilation
import os
import json
def euler_angles_smooth(XYZ_euler_angles):
if XYZ_euler_angles.ndim == 1:
XYZ_euler_angles = XYZ_euler_angles[:, np.newaxis]
for i in range(XYZ_euler_angles.shape[0]-1):
for j in range(XYZ_euler_angles.shape[1]):
# smooth
if XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] > 180:
XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] - 360
elif XYZ_euler_angles[i+1, j] - XYZ_euler_angles[i, j] < -180:
XYZ_euler_angles[i+1:, j] = XYZ_euler_angles[i+1:, j] + 360
return np.squeeze(XYZ_euler_angles)
def xyz2euler_body(xyz, xyz_body_frame, X_dir=1.0, Y_dir=1.0):
'''
xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
xyz_body_frame: Coordinates of body frame. Used to calculate the Y direction rotation of body.
X_dir: -1.0 for arm and body.
Y_dir: -1.0 for body and head.
'''
# swap y and z to align the coordinate in the mine-imator
xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
xyz[:, :, 0] = -xyz[:, :, 0]
xyz_body_frame[:, :, [1, 2]] = xyz_body_frame[:, :, [2, 1]]
xyz_body_frame[:, :, 0] = -xyz_body_frame[:, :, 0]
p0, p1, p2 = torch.unbind(xyz, dim=1)
p1_, p4_, p14_, p11_ = torch.unbind(xyz_body_frame, dim=1)
# solve the cosine pose matrix
Y = (p0 - p1) * Y_dir
arm = p2 - p1
Y = F.normalize(Y, dim=1)
X = F.normalize(p11_ + p4_ - p1_ - p14_, dim=1)
# X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
Z = F.normalize(torch.cross(X, Y), dim=1)
cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
r = Rotation.from_matrix(cos_pose_matrix)
YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
# bend
bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
bend = torch.rad2deg(torch.acos(bend))
# swap xyz
YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
XYZ_euler_angles = YXZ_euler_angles
# arm cos_pose_matrix
Y_arm = F.normalize(arm, dim=1)
X_arm = X
Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
cos_pose_matrix_arm = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
# avoid abrupt changes in angle
XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
bend = euler_angles_smooth(bend.numpy())
return XYZ_euler_angles, bend, cos_pose_matrix_arm
def xyz2euler_relative(xyz, cos_body, X_dir=1.0, Y_dir=1.0, head=False, leg=False, euler_body=None):
'''
xyz: Coordinates from 3D human pose estimation. Each dimension: (frame, 3, xyz)
X_dir: -1.0 for arm and body.
Y_dir: -1.0 for body and head.
'''
# swap y and z to align the coordinate in the mine-imator
xyz[:, :, [1, 2]] = xyz[:, :, [2, 1]]
xyz[:, :, 0] = -xyz[:, :, 0]
p0, p1, p2 = torch.unbind(xyz, dim=1)
# solve the cosine pose matrix
Y = (p0 - p1) * Y_dir
arm = p2 - p1
Y = F.normalize(Y, dim=1)
X = F.normalize(torch.cross(X_dir*arm, Y), dim=1) # TODO smooth
Z = F.normalize(torch.cross(X, Y), dim=1)
cos_pose_matrix = torch.stack([X, Y, Z], dim=2)
if head == True:
Y_arm = F.normalize(arm, dim=1)
X_arm = X
Z_arm = F.normalize(torch.cross(X_arm, Y_arm), dim=1)
cos_pose_matrix = torch.stack([X_arm, Y_arm, Z_arm], dim=2)
# relative to the body rotation Y
if leg == True:
euler_body_Y = euler_body * 0
euler_body_Y[:, 0:1] = euler_body[:, 1:2]
r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
cos_body_Y = torch.from_numpy(r_body_Y.as_matrix())
# relative to the body
cos_relative = cos_body if leg == False else cos_body_Y.float()
cos_pose_matrix = cos_relative.permute(0, 2, 1) @ cos_pose_matrix
r = Rotation.from_matrix(cos_pose_matrix)
YXZ_euler_angles = r.as_euler("YXZ", degrees=True)
# bend
bend = -(Y * F.normalize(arm, dim=1)).sum(dim=1) * Y_dir
bend = torch.rad2deg(torch.acos(bend))
# if head == True:
# bend = bend * 0.5
# swap xyz
YXZ_euler_angles[:, [0, 1, 2]] = YXZ_euler_angles[:, [1, 0, 2]]
XYZ_euler_angles = YXZ_euler_angles
# avoid abrupt changes in angle
XYZ_euler_angles = euler_angles_smooth(XYZ_euler_angles)
bend = euler_angles_smooth(bend.numpy())
return XYZ_euler_angles, bend
def calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, length_leg=[6, 6], prior=False):
'''
Calculate the offset of the body to make the movement more realistic.
First, determine the foot positions of both legs based on the actual
effect of Euler angle rotation in Mine-imator. Then, determine which
leg is currently touching the ground and fix the grounded leg. This
allows the calculation of the body offset.
'''
def calculate_leg_coordinates(r_body_Y, euler_leg, bend_leg, length_leg, right=True):
YXZ_euler_leg = euler_leg[:, [1, 0, 2]]
r1 = Rotation.from_euler("YXZ", YXZ_euler_leg, degrees=True)
m1 = r1.as_matrix()
X1 = m1[:, :, 0] # direction
Y1 = m1[:, :, 1] # vector to be rotated
r2 = Rotation.from_rotvec(X1*bend_leg[:, np.newaxis], degrees=True)
Y2 = r2.apply(Y1) # reconstruct the arm vector
coordinates = -(Y1 * length_leg[0] + Y2 * length_leg[1])
coordinates[:, 0] = coordinates[:, 0] - 2
coordinates = r_body_Y.apply(coordinates)
return coordinates
# calculate the endpoint coordinates of two legs
euler_body_Y = euler_body * 0
euler_body_Y[:, 0:1] = euler_body[:, 1:2]
r_body_Y = Rotation.from_euler("YXZ", euler_body_Y, degrees=True)
right_coordinates = calculate_leg_coordinates(r_body_Y, euler_right_leg, bend_right_leg, length_leg)
left_coordinates = calculate_leg_coordinates(r_body_Y, euler_left_leg, bend_left_leg, length_leg)
# stack, 0: right, 1: left
coordinates = np.stack([right_coordinates, left_coordinates], axis=1)
# determine which leg grounded, 0: right, 1: left
grounded_flag = (right_coordinates[:, 1] > left_coordinates[:, 1])*1
# prior knowledge: The more bended legs are not grounded
if prior == True:
grounded_flag_left = (bend_right_leg - bend_left_leg) > 30
grounded_flag_right = (bend_left_leg - bend_right_leg) > 30
grounded_flag += grounded_flag_left*1
grounded_flag *= (1 - grounded_flag_right)*1
# smoothing
grounded_flag = binary_erosion(grounded_flag, structure=np.ones(7))*1
grounded_flag = binary_dilation(grounded_flag, structure=np.ones(7))*1
body_POS = np.zeros_like(right_coordinates)
# POS_Y
ind = np.array(range(right_coordinates.shape[0]))
body_POS[:, 1] = -coordinates[ind, grounded_flag, 1]
# extract the X, Z coordinates of grounded leg in time t_1
X_t1 = coordinates[ind[:-1], grounded_flag[:-1], 0]
Z_t1 = coordinates[ind[:-1], grounded_flag[:-1], 2]
# extract the X, Z coordinates of grounded leg in time t_2
# note that the split of grounded_flag not changed
X_t2 = coordinates[ind[1:], grounded_flag[:-1], 0]
Z_t2 = coordinates[ind[1:], grounded_flag[:-1], 2]
# calculate the relative displacement between two frames
X_relative = X_t2 - X_t1
Z_relative = Z_t2 - Z_t1
# calculate the absolute displacement
X_abs = np.cumsum(X_relative)
Z_abs = np.cumsum(Z_relative)
body_POS[1:, 0] = -X_abs
body_POS[1:, 2] = -Z_abs
return body_POS
def add_keyframes(data, length, part_name, euler, bend, not_body=True, not_head=True, body_steve=False, body_POS=None):
for i in range(length):
if not_head:
keyframes_dict = {
"position": i,
"part_name": part_name,
"values": {
"ROT_X": float(euler[i][0]),
"ROT_Y": float(euler[i][2]), # Y, Z args in mine-imator miframes is exchanged. Maybe a bug.
"ROT_Z": float(euler[i][1]*not_body),
"BEND_ANGLE_X": float(bend[i])
}
}
else: # no bend
keyframes_dict = {
"position": i,
"part_name": part_name,
"values": {
"ROT_X": float(euler[i][0]),
"ROT_Y": float(euler[i][2]),
"ROT_Z": float(euler[i][1]),
}
}
if body_steve == True:
keyframes_dict = {
"position": i,
"values": {
"POS_X": float(body_POS[i][0]),
"POS_Y": float(body_POS[i][2]),
"POS_Z": float(body_POS[i][1]),
"ROT_Z": float(euler[i][1])
}
}
data["keyframes"].append(keyframes_dict)
print(f"add_key_frames: {part_name}")
def hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=True):
# read data
with open(HPE_filename, 'rb') as file:
data = np.load(file)
print(f"open file: {HPE_filename}")
xyz = data.copy()
length = xyz.shape[0]
# extract data from each body part
xyz_right_leg = torch.from_numpy(xyz[:, 1:4, :])
xyz_right_arm = torch.from_numpy(xyz[:, 14:17, :])
xyz_left_leg = torch.from_numpy(xyz[:, 4:7, :])
xyz_left_arm = torch.from_numpy(xyz[:, 11:14, :])
xyz_body = torch.from_numpy(xyz[:, [0, 7, 8], :])
xyz_body_frame = torch.from_numpy(xyz[:, [1, 4, 14, 11], :])
xyz_head = torch.from_numpy(xyz[:, [8, 9, 10], :])
# calculate the absolute euler angles of body
euler_body, bend_body, cos_pos_matrix = xyz2euler_body(xyz_body, xyz_body_frame, X_dir=-1, Y_dir=-1)
# calculate the relative euler angles of arm and head with respect to the body ROT_Y
euler_right_leg, bend_right_leg = xyz2euler_relative(xyz_right_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
euler_left_leg, bend_left_leg = xyz2euler_relative(xyz_left_leg, cos_pos_matrix, leg=True, euler_body=euler_body)
# calculate the relative euler angles of arm and head with respect to the upper body
euler_right_arm, bend_right_arm = xyz2euler_relative(xyz_right_arm, cos_pos_matrix, X_dir=-1)
euler_left_arm, bend_left_arm = xyz2euler_relative(xyz_left_arm, cos_pos_matrix, X_dir=-1)
euler_head, bend_head = xyz2euler_relative(xyz_head, cos_pos_matrix, Y_dir=-1, head=True)
# create json format data
data = {
"format": 34,
"created_in": "2.0.0", # mine-imator version
"is_model": True,
"tempo": FPS_mine_imator, # FPS
"length": length, # keyframes length
"keyframes": [
],
"templates": [],
"timelines": [],
"resources": []
}
# relative offset makes the model more realistic
# caculate the relative offset based on Euler angle and bending angle
body_POS = calculate_body_offset(euler_body, euler_right_leg, bend_right_leg, euler_left_leg, bend_left_leg, prior=prior)
add_keyframes(data, length, "left_leg", euler_left_leg, bend_left_leg)
add_keyframes(data, length, "right_leg", euler_right_leg, bend_right_leg)
add_keyframes(data, length, "left_arm", euler_left_arm, bend_left_arm)
add_keyframes(data, length, "right_arm", euler_right_arm, bend_right_arm)
add_keyframes(data, length, "body", euler_body, bend_body, not_body=False)
add_keyframes(data, length, "head", euler_head, bend_head, not_head=False)
add_keyframes(data, length, "abc", euler_body, bend_body, body_steve=True, body_POS=body_POS) # TODO
# save json
with open(keyframes_filename, "w") as file:
json.dump(data, file, indent=4)
print(f"keyframes file saves successfully, file path: {os.path.abspath(keyframes_filename)}")
if __name__ == '__main__':
# config
HPE_filename = "outputs/test_3d_output_malaoshi_2-00_2-30_postprocess.npy"
FPS_mine_imator = 30
keyframes_filename = "steve_malaoshi2.miframes"
prior = True
hpe2keyframes(HPE_filename, FPS_mine_imator, keyframes_filename, prior=prior)
print("Done!")