Spaces:
Running
Running
# Copyright (c) 2018-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
import argparse | |
import os | |
import sys | |
import zipfile | |
from glob import glob | |
from shutil import rmtree | |
import h5py | |
import numpy as np | |
sys.path.append('../') | |
from common.h36m_dataset import Human36mDataset | |
from common.camera import world_to_camera, project_to_2d, image_coordinates | |
from common.utils import wrap | |
output_filename = 'data_3d_h36m' | |
output_filename_2d = 'data_2d_h36m_gt' | |
subjects = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'] | |
if __name__ == '__main__': | |
if os.path.basename(os.getcwd()) != 'data': | |
print('This script must be launched from the "data" directory') | |
exit(0) | |
parser = argparse.ArgumentParser(description='Human3.6M dataset downloader/converter') | |
# Default: convert dataset preprocessed by Martinez et al. in https://github.com/una-dinosauria/3d-pose-baseline | |
parser.add_argument('--from-archive', default='', type=str, metavar='PATH', help='convert preprocessed dataset') | |
# Alternatively, convert dataset from original source (the Human3.6M dataset path must be specified manually) | |
parser.add_argument('--from-source', default='', type=str, metavar='PATH', help='convert original dataset') | |
args = parser.parse_args() | |
if args.from_archive and args.from_source: | |
print('Please specify only one argument') | |
exit(0) | |
if os.path.exists(output_filename + '.npz'): | |
print('The dataset already exists at', output_filename + '.npz') | |
exit(0) | |
if args.from_archive: | |
print('Extracting Human3.6M dataset from', args.from_archive) | |
with zipfile.ZipFile(args.from_archive, 'r') as archive: | |
archive.extractall() | |
print('Converting...') | |
output = {} | |
for subject in subjects: | |
output[subject] = {} | |
file_list = glob('h36m/' + subject + '/MyPoses/3D_positions/*.h5') | |
assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list)) | |
for f in file_list: | |
action = os.path.splitext(os.path.basename(f))[0] | |
if subject == 'S11' and action == 'Directions': | |
continue # Discard corrupted video | |
with h5py.File(f) as hf: | |
positions = hf['3D_positions'].value.reshape(32, 3, -1).transpose(2, 0, 1) | |
positions /= 1000 # Meters instead of millimeters | |
output[subject][action] = positions.astype('float32') | |
print('Saving...') | |
np.savez_compressed(output_filename, positions_3d=output) | |
print('Cleaning up...') | |
rmtree('h36m') | |
print('Done.') | |
elif args.from_source: | |
print('Converting original Human3.6M dataset from', args.from_source) | |
output = {} | |
from scipy.io import loadmat | |
import ipdb; | |
ipdb.set_trace() | |
for subject in subjects: | |
output[subject] = {} | |
file_list = glob(args.from_source + '/' + subject + '/MyPoseFeatures/D3_Positions/*.cdf.mat') | |
assert len(file_list) == 30, "Expected 30 files for subject " + subject + ", got " + str(len(file_list)) | |
for f in file_list: | |
action = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0] | |
if subject == 'S11' and action == 'Directions': | |
continue # Discard corrupted video | |
# Use consistent naming convention | |
canonical_name = action.replace('TakingPhoto', 'Photo') \ | |
.replace('WalkingDog', 'WalkDog') | |
hf = loadmat(f) | |
positions = hf['data'][0, 0].reshape(-1, 32, 3) | |
positions /= 1000 # Meters instead of millimeters | |
output[subject][canonical_name] = positions.astype('float32') | |
print('Saving...') | |
np.savez_compressed(output_filename, positions_3d=output) | |
print('Done.') | |
else: | |
print('Please specify the dataset source') | |
exit(0) | |
# Create 2D pose file | |
print('') | |
print('Computing ground-truth 2D poses...') | |
dataset = Human36mDataset(output_filename + '.npz') | |
output_2d_poses = {} | |
for subject in dataset.subjects(): | |
output_2d_poses[subject] = {} | |
for action in dataset[subject].keys(): | |
anim = dataset[subject][action] | |
positions_2d = [] | |
for cam in anim['cameras']: | |
pos_3d = world_to_camera(anim['positions'], R=cam['orientation'], t=cam['translation']) | |
pos_2d = wrap(project_to_2d, pos_3d, cam['intrinsic'], unsqueeze=True) | |
pos_2d_pixel_space = image_coordinates(pos_2d, w=cam['res_w'], h=cam['res_h']) | |
positions_2d.append(pos_2d_pixel_space.astype('float32')) | |
output_2d_poses[subject][action] = positions_2d | |
print('Saving...') | |
metadata = { | |
'num_joints': dataset.skeleton().num_joints(), | |
'keypoints_symmetry': [dataset.skeleton().joints_left(), dataset.skeleton().joints_right()] | |
} | |
np.savez_compressed(output_filename_2d, positions_2d=output_2d_poses, metadata=metadata) | |
print('Done.') | |