Sapphire-356's picture
add: Video2MC
95f8bbc
# -----------------------------------------------------
# Copyright (c) Shanghai Jiao Tong University. All rights reserved.
# Written by Jiefeng Li ([email protected])
# -----------------------------------------------------
from opt import opt
import sys
import numpy as np
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from .img import transformBoxInvert
class DataLogger(object):
def __init__(self):
self.clear()
def clear(self):
self.value = 0
self.sum = 0
self.cnt = 0
self.avg = 0
def update(self, value, n=1):
self.value = value
self.sum += value * n
self.cnt += n
self._cal_avg()
def _cal_avg(self):
self.avg = self.sum / self.cnt
class NullWriter(object):
def write(self, arg):
pass
def accuracy(output, label, dataset, out_offset=None):
if type(output) == list:
return accuracy(output[opt.nStack - 1], label[opt.nStack - 1], dataset, out_offset)
else:
return heatmapAccuracy(output.cpu().data, label.cpu().data, dataset.accIdxs)
def heatmapAccuracy(output, label, idxs):
preds = getPreds(output)
gt = getPreds(label)
norm = torch.ones(preds.size(0)) * opt.outputResH / 10
dists = calc_dists(preds, gt, norm)
acc = torch.zeros(len(idxs) + 1)
avg_acc = 0
cnt = 0
for i in range(len(idxs)):
acc[i + 1] = dist_acc(dists[idxs[i] - 1])
if acc[i + 1] >= 0:
avg_acc = avg_acc + acc[i + 1]
cnt += 1
if cnt != 0:
acc[0] = avg_acc / cnt
return acc
def getPreds(hm):
''' get predictions from score maps in torch Tensor
return type: torch.LongTensor
'''
assert hm.dim() == 4, 'Score maps should be 4-dim'
maxval, idx = torch.max(hm.view(hm.size(0), hm.size(1), -1), 2)
maxval = maxval.view(hm.size(0), hm.size(1), 1)
idx = idx.view(hm.size(0), hm.size(1), 1) + 1
preds = idx.repeat(1, 1, 2).float()
preds[:, :, 0] = (preds[:, :, 0] - 1) % hm.size(3)
preds[:, :, 1] = torch.floor((preds[:, :, 1] - 1) / hm.size(3))
# pred_mask = maxval.gt(0).repeat(1, 1, 2).float()
# preds *= pred_mask
return preds
def calc_dists(preds, target, normalize):
preds = preds.float().clone()
target = target.float().clone()
dists = torch.zeros(preds.size(1), preds.size(0))
for n in range(preds.size(0)):
for c in range(preds.size(1)):
if target[n, c, 0] > 0 and target[n, c, 1] > 0:
dists[c, n] = torch.dist(
preds[n, c, :], target[n, c, :]) / normalize[n]
else:
dists[c, n] = -1
return dists
def dist_acc(dists, thr=0.5):
''' Return percentage below threshold while ignoring values with a -1 '''
if dists.ne(-1).sum() > 0:
return dists.le(thr).eq(dists.ne(-1)).float().sum() * 1.0 / dists.ne(-1).float().sum()
else:
return - 1
def postprocess(output):
p = getPreds(output)
for i in range(p.size(0)):
for j in range(p.size(1)):
hm = output[i][j]
pX, pY = int(round(p[i][j][0])), int(round(p[i][j][1]))
if 0 < pX < opt.outputResW - 1 and 0 < pY < opt.outputResH - 1:
diff = torch.Tensor(
(hm[pY][pX + 1] - hm[pY][pX - 1], hm[pY + 1][pX] - hm[pY - 1][pX]))
p[i][j] += diff.sign() * 0.25
p -= 0.5
return p
def getPrediction(hms, pt1, pt2, inpH, inpW, resH, resW):
assert hms.dim() == 4, 'Score maps should be 4-dim'
maxval, idx = torch.max(hms.view(hms.size(0), hms.size(1), -1), 2)
maxval = maxval.view(hms.size(0), hms.size(1), 1)
idx = idx.view(hms.size(0), hms.size(1), 1) + 1
preds = idx.repeat(1, 1, 2).float()
preds[:, :, 0] = (preds[:, :, 0] - 1) % hms.size(3)
preds[:, :, 1] = torch.floor((preds[:, :, 1] - 1) / hms.size(3))
pred_mask = maxval.gt(0).repeat(1, 1, 2).float()
preds *= pred_mask
# Very simple post-processing step to improve performance at tight PCK thresholds
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm = hms[i][j]
pX, pY = int(round(float(preds[i][j][0]))), int(
round(float(preds[i][j][1])))
if 1 < pX < opt.outputResW - 2 and 1 < pY < opt.outputResH - 2:
diff = torch.Tensor(
(hm[pY][pX + 1] - hm[pY][pX - 1], hm[pY + 1][pX] - hm[pY - 1][pX]))
diff = diff.sign() * 0.25
diff[1] = diff[1] * inpH / inpW
preds[i][j] += diff
preds_tf = torch.zeros(preds.size())
for i in range(hms.size(0)): # Number of samples
for j in range(hms.size(1)): # Number of output heatmaps for one sample
preds_tf[i][j] = transformBoxInvert(
preds[i][j], pt1[i], pt2[i], inpH, inpW, resH, resW)
return preds, preds_tf, maxval
def getmap(JsonDir='./val/alphapose-results.json'):
ListDir = '../coco-minival500_images.txt'
annType = ['segm', 'bbox', 'keypoints']
annType = annType[2] # specify type here
prefix = 'person_keypoints' if annType == 'keypoints' else 'instances'
print('Running evaluation for *%s* results.' % (annType))
# load Ground_truth
dataType = 'val2014'
annFile = '../%s_%s.json' % (prefix, dataType)
cocoGt = COCO(annFile)
# load Answer(json)
resFile = JsonDir
cocoDt = cocoGt.loadRes(resFile)
# load List
fin = open(ListDir, 'r')
imgIds_str = fin.readline()
if imgIds_str[-1] == '\n':
imgIds_str = imgIds_str[:-1]
imgIds_str = imgIds_str.split(',')
imgIds = []
for x in imgIds_str:
imgIds.append(int(x))
# running evaluation
iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True)
t = np.where(0.5 == iouThrs)[0]
cocoEval = COCOeval(cocoGt, cocoDt, annType)
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
score = cocoEval.eval['precision'][:, :, :, 0, :]
mApAll, mAp5 = 0.01, 0.01
if len(score[score > -1]) != 0:
score2 = score[t]
mApAll = np.mean(score[score > -1])
mAp5 = np.mean(score2[score2 > -1])
cocoEval.summarize()
return mApAll, mAp5